
1

Dedicated Compilation Techniques for SystemC
using LLVM Compiler Infrastructure and JIT’s Capabilities

Master student: Si-Mohamed Lamraoui Supervisors: Matthieu Moy, Claire Maiza
Verimag, 2, avenue de Vignate, 38610 GIERES - France

Email: <firstname>.<lastname>@imag.fr

Abstract—SystemC is a C++ library allowing the design of the
hardware blocks contained in a System-on-chip at different level of
abstraction. As SystemC is a C++ library, the programs may be compiled
with a common C++ compiler. But these compilers miss a lot of
optimization opportunities specific to SystemC programs. In this paper,
we introduce a way to improve simulation performances of SystemC
programs using the LLVM compiler infrastructure.

Index Terms—SystemC, PinaVM, Tweto, TLM, LLVM, JIT, System-
on-chip, compiler, optimizations

I. INTRODUCTION

EMBEDDED systems are becoming increasingly complex over
time. This is why the silicon industry needs new solutions and

tools in order to stay on track.
An important point for the industries where products are outmoded

quickly is the Time to market. It is the length of time it takes from a
product being conceived until its being available for sale. To reduce
the Time to market, the sofware and the hardware of these products
must be design in parallel. Thus, in order to develop the sofware
before the hardware is ready we model the System-on-chip of those
embedded systems.

A System-on-chip is a single integrated circuit (chip) integrating
all components of a computer or other electronic system. It contains
a software to control the behaviour of the components. This sofware
may be design without the hardware thanks to a model.

In this paper, we are interested in a high level of modelling, and
more precisely in internal communications of the systems on chip.
The standard Transaction Level Modeling (TLM) offers this level
of abstraction and is popular in the industry. Although the models
using TLM are faster than those using lower level ones, the need of
better simulation performances is always on the agenda. Of course,
the ultimate goal would be to simulate at the same speed as the real
system.

To describe and simulate the Systems-on-chip we use SystemC. It
is a C++ library allowing the design of the hardware blocks contained
in a System-on-chip at different level of abstraction. The transactions
between these blocks may be modelled using TLM.

As SystemC is a C++ library, the programs may be compiled with
a common C++ compiler. However, these compilers miss a lot of
optimization opportunities specific to SystemC programs.

In this paper, we introduce a way to improve simulation perfor-
mances of SystemC programs. We reduce the number of operations
induced by the TLM communications without corrupting the model.

We first introduce SystemC in Section 2. Then, in Section 3 we
summarize related works that improve performance of simulation. We
present the LLVM framework, the tool Tweto, the PinaVM compiler
and the TLM Basic protocol in Section 4. In Section 5 we introduce
our solution with concrete experimental results.

II. SYSTEMC

SystemC [1], [2] is a C++ library aiming specifically at modeling
Systems On Chip at differents levels of abstraction. As it is a C++

SC_MODULE(name) {
. . .
/ / C o n s t r u c t o r
SC_CTOR(name) {

. . .
}

} ;

Listing 1. A module

/ / i n p u t p o r t o f t y p e p o r t t y p e
s c _ i n < p o r t t y p e >
/ / o u t p u t p o r t o f t y p e p o r t t y p e
sc_ou t < p o r t t y p e >
/ / i n o u t p o r t o f t y p e p o r t t y p e
s c _ i n o u t < p o r t t y p e >

Listing 2. Different kind of ports

library, it uses the features of this language such as its syntax or its
object oriented style. SystemC also inludes a simulation kernel to
emulate the future system.

A SystemC design is made of modules (see Listing 1), thereby the
system is divided in less complex parts. A module allows designers
to hide internal data representation and algorithms. Modules can only
interact with each other through their interfaces. So, if a module is
modified, the rest of the system has not to be modified while its
interface is not changed. A module may contain serveral kinds of
elements like nested module or processes.

Processes are the basic units of execution within SystemC. There
are functions that are called to emulate the behavior of the target
device. There are three types of processes: methods, threads and
clocked threads. Unlike methods, threads can be suspended. In
addition, the processes may use events that come from local or
external signals to unlock suspended threads or to execute methods.
The Listing 3 shows an exemple of process implementation.

Ports of a module are the external interfaces that pass information
to and from a module, and trigger actions within the module. As
shown in Listing 2, a port can be of three kinds. For instance, the
input mode allows only data to come into the module from another
one through a signal.

A signal creates connections between module ports allowing mod-
ules to communicate. Each signal is bound to two ports from two
differents modules.

When the system is fully implemented, SystemC offers to simulate
it. The SystemC simulations may be cycle-accurate, that means
processes are executed and signals are updated at clock transitions.
All of this is possible thanks to a build-in scheduler. Before the
simulation starts, all modules are instantiated and properly connected,
this is the elaboration phase.

2

SC_MODULE(name) {
s c _ i n < type > i n ;
void foo () ;
SC_CTOR(name) {

SC_METHOD(foo) ; / / or e l s e SC_THREAD(f o o) ;
s e n s i t i v e (i n) ;

}
} ;
void foo () {

. . .
}

Listing 3. Module with a method process

III. RELATED WORK

As far as we know, there is no previous work on automatic
optimisation of TLM. However, there is a way to improve TLM
transaction performances using the Direct Memory Interface (DMI)
technique. This technique, included in the TLM-2.0 library, is done
manually and should be done carfully [15].

An upward trend in the enhancement of simulation time is to make
SystemC’s process scheduler more effcients. Scoot [6], SplitPro [7]
and the simulator SystemCASS [8] compute a fully static schedule
before the beginning of the simulation.

On top of that, there are some commercial softwares. Unfortu-
nately, these tools cannot be evaluated properly without their source
code or research reports.

IV. BACKGROUND

A. LLVM : Low Level Virtual Machine

Low Level Virtual Machine (LLVM) [9], [10] is a compiler
framework that optimizes compilation, link, execution and idle time
in programs written in any language. LLVM can be used to create
code generators and optimizers for an arbitrary architecture.

This framework has been built around a dedicated code representa-
tion (bitcode). This intermediate representation is an abstract RISC-
like instruction set based on a language-independent type-system. It
is composed of high-level instructions while being low-level enough
to represent any program. LLVM’s code representation has many
convenient features like its SSA (Static Single Assignement) [11]
form that facilitates compilation optimization and analysis.

LLVM is a virtual machine, it has run-time capabilities that operate
on the program during the execution giving several opportunities to
improve performances. This last point is possible thanks to the Just-
In-Time (JIT) technique [12], [13].

B. Tweto

Tweto is based on simulation with elaboration-time optimizations.
Classic compilers, such as GCC, do not take into acount all the
data that become constant after the elaboration phase. Thus, these
compilers miss a lot of optimization opportunities. Tweto exploits
these data to do process specialization, indirect call resolution and
calls specialization.
Claude Helmstetter is the main contributor of this tool.

C. PinaVM

PinaVM (PinaVM is not a Virtual Machine) [14] is a SystemC
frontend built using the LLVM framework. It was introduced to per-
form efficient formal and symbolic verification of SystemC programs.
Basically, PinaVM takes an LLVM bitcode as input, this bitcode
represents the SystemC program. Then, using the LLVM’s JIT engine,
PinaVM executes the elaboration phase. At this point, all modules

are created and connected. We know this configuration will remain
static over time. Then, PinaVM retrieves all the information about
the system’s architecture. Different backends use these informations
to carry out verifications.
In this paper, we add to PinaVM a backend aimed toward simulation
and optimizations. We use the tool Tweto as a basis to make this
backend. We also extend it by including TLM optimizations.

D. TLM Basic Protocol

Transaction-Level Modeling (TLM) is a high-level approach to
model digital systems where the details of the communication among
modules are separated from the details of the implementation of
functional units or of the communication architecture [15], [16], [17].
TLM allows to create different kinds of protocols, like the Basic
Protocol.

The Basic protocol is not used for production, it was introduced as
an example. It is a simple Bus protocol with two transaction modes:
Read and Write. Each transaction is routed according to an address
map through the Bus. Figure 1 shows an exemple of system that uses
this protocol. A typical transaction starts from an Initiator module
(CPU) that initiates the communication. The data is then sent to the
Bus. When the given address aims an existing Target module (RAM),
the data is redirected to this target by the Bus.

CPU RAM AGP

[0x00,0x42[

BUS

Fig. 1. A system using TLM Basic protocol. The RAM (target module) is
reachable in the range of addresses 0x00 to 0x42.

In Listing 4 the implementation of the system shown in Figure 1.
Here, we just show a simplified code of the CPU and RAM module.
The CPU module writes on the Bus through a socket in the process
named thread. The RAM module implements the write method, witch
saves the received data in an array. In the beginning of the main
function the modules are instantiated. Then, the Bus mapping is set
for each target modules. Next, the modules are connected to the Bus.
Finally, we start the simulation.

V. STATIC ADDRESS RESOLUTION

The TLM Basic protocol is slower than direct access even if it is
a straightforward protocol. A simple write transaction uses a lot of
operations. In Figure 2, a CPU module attempts to write the data
data at the address addr. The transaction starts by a virtual call
on the socket (1). Then, the call is forwarded to the target socket (2).
The bus decodes the address (3) and does another virtual call (4).
The call is forwarded again to the target. Finally, the actual method
is called in the RAM module (5).
Knowing this, we aim at improving the way the transactions are done
to get better performances.

A. Our solution

To avoid all the intermediate operations, we choose to replace the
original call by a direct call to the target module’s method.

For implementing this solution, we created an optimisation pass in
the Tweto backend. As shown in Figure 3, the pass is run after the
elaboration phase and before the simulation.

3

SC_MODULE(cpu) {
b a s i c : : i n i t i a t o r _ s o c k e t < i n i t i a t o r > s o c k e t ;
void t h r e a d (void) {

s o c k e t . w r i t e (addr , d a t a) ;
}
SC_CTOR(cpu) {

SC_THREAD(t h r e a d) ;
}

} ;

SC_MODULE(ram) {
b a s i c : : t a r g e t _ s o c k e t < t a r g e t > s o c k e t ;
s t a t u s w r i t e (a d d r _ t &a , d a t a _ t &d) {

mem[a] = d ;
re turn t lm : : TLM_OK_RESPONSE ;

}
} ;
. . .
i n t sc_main (i n t argc , char ∗∗ a rgv) {

Cpu i n t e l _ c p u (" I n t e l −8088") ;
Ram simm_ram ("SIMM30") ;
Agp onex_agp ("AGP1X") ;
Bus i s a _ b u s (" ISA ") ;

/ / SIMM30 i s mapped a t a d d r e s s e s [0 , 42[
i s a _ b u s . map (simm_ram . s o c k e t , 0 , 42) ;
/ / AGP1X i s mapped a t a d d r e s s e s [4 2 , 84[
i s a _ b u s . map (onex_agp . s o c k e t , 42 , 84) ;

/ / c o n n e c t components t o t h e bus
i n t e l _ c p u . s o c k e t . b ind (i s a _ b u s . t a r g e t) ;
i s a _ b u s . i n i t i a t o r . b ind (simm_ram . s o c k e t) ;
i s a _ b u s . i n i t i a t o r . b ind (onex_agp . s o c k e t) ;

/ / and s t a r t s i m u l a t i o n
s c _ s t a r t () ;

re turn 0 ;
}

Listing 4. Implementation of the system shown in Figure 1

CPU

RAM

socket.write(addr,data)

write(addr_t,data_t) {

 mem[a] = d;

}

1
2

3 4

5

Fig. 2. A write transaction. 1. Virtual call on the socket, 2. Forwarded to the
target socket 3. Address decoding 4. Forwarded to the target socket 5. Call
of the actual write method

Since the elaboration phase is done at an earlier level, the pass
know how the modules are connected. For instance, in Figure 2, it
will determine that the called method belongs to the RAM module.

As we bypass the Bus, the automatic redirection of the transactions
will not be done anymore. Thus, before replacing a call, we need the
address used to find out which module is targeted.

To do so, we use a frontend’s method designed to retrieve a value
from the bitcode. This method uses the JIT engine in order to execute

 PinaVM

Frontend

 Tweto

Backend

Execution

bitcode

elaboration
SystemC

C++

TLM Basic

 Pass

Fig. 3. Big picture on simulation of SystemC programs.

CPU

Process
...
call write(data,addr)
...

JIT

Pass

42

Fig. 4. Address value retrieving with the JIT engine..

the appropriate piece of code on the fly. As shown in Figure 4, the call
to the write or read method is searched in the CPU module’s proccess.
Then, the frontend’s method is run on the address argument. If the
value has been extracted, the pass can make the appropriate steps.

At this stage, we cannot make any modifications in the parent
processes of those calls. As the bitcode of the processes’ methods
are shared by the same kind of modules, we cannot change them.
When there is a change to do, we first clone the original process.

When the initiator process is cloned, we can search the write or
read methods in the targets modules. As LLVM allows to look for a
method by name, we are able to find them using the name mangling.
Originally, the name mangling is a technique that creates a unique
name in the bitcode for each methods. Here, we exploit this technique
because we know how the unique name of the write and read methods
are formed, as shown in Figure 5. All mangled symbols begin with
_Z, this is followed by N. Then a series of <length, id> pairs
(the length being the length of the next identifier), and finally E,
followed by a code that represents the type of the method (prototype).
In our case, there are only two pairs : <len,module type> and
<5,write> or <4,read>.

(1) _ZN + moduleType + 5write + E + ERKjS1_

(2) _ZN + moduleType + 4read + E + RKjRj

(3) _ZN6target5writeERKjRj

Fig. 5. 1,2. Write and read method’s mangled symbol decomposition. 3. An
exemple of mangled symbol.

Once the method is retrieved, we replace the indirect calls in the
CPU module by direct ones. Figure 6 illustrates the code modification
in the cloned CPU’s process after applying our solution. Now, all the
costly operations are avoided and there will just be only one direct
call.

4

CPU

RAM

write(addr,data)

write(addr_t,data_t) {

 cout<< d << endl;

}

Fig. 6. Direct call to the RAM’s method from the CPU module.

Before returning control to the SystemC program, we ought to
recompile and relink every modified/created methods. This is done
by the LLVM’s execution engine.

B. Experiments

In this section we show the first results we obtained. The experi-
ment consists of running a lot of transaction between several initiator
modules and one target module. Each initiator makes 10000 writing
to the target. The number of initiators for each measure increases
from 10 to 100.

Figure 7 shows the simulation time depending on the number of
initiators. Although the use of our pass adds computation time, the
simulation time is already lower from 10 initiators. We gain at most
200ms with 100 initiators that shows the efficiency of our solution.

The improvement due to our pass is huge on this toy exemple and
should be non-negligible on real programs.

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

D
ur
at
io
n
(m
s)

Number of initiators

"Optimizer OFF"
"Optimizer ON"

Fig. 7. Initiators vs. one target experiment (10.000 calls).

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an extension of PinaVM, a tool
based upon the framework LLVM, which facilitates the developement
of compilers.

Initially PinaVM was introduced to perform efficient formal and
symbolic verification of SystemC programs. We extended it to allow
simulation of SystemC programs thanks to the previous work of

Claude Helmstetter. Moreover, we included an optimization pass that
reduces the number of operations induced by the transactions of the
TLM Basic Bus protocol. The primary results of these optimizations
were very encouraging. We shown that it is possible to get huge gains
on simple exemples.

Unfortunately, due to the short time spent on this work, our
pass does not handle enough particular cases to be used in bigger
systems. Thus, much more work is necessary in order to enhance
this optimization pass.

VII. ACKNOWLEDGEMENT

The author would like to thank Kevin Marquet and Claude Helm-
stetter for the assistance they have provided on PinaVM and Tweto,
Claire Maiza and Matthieu Moy for their precious help and support
during this work.

REFERENCES

[1] “The Open SystemC Initiative.” [Online]. Available:
http://www.systemc.org

[2] “SystemC 2.0 user’s guide - Update for SystemC 2.0.1,” 2002. [Online].
Available: http://www.systemc.org

[3] H. Alemzadeh, S. Aminzadeh, R. Saberi, and Z. Navabi, “Code optimiza-
tion for enhancing systemc simulation time,” in Design Test Symposium
(EWDTS), 2010 East-West, sept. 2010, pp. 431 –434.

[4] J. Ditmar, “Area optimisation in systemc hardware compilation,” 2007.
[5] S. A. Homa Alemzadeh, “Efficient system level design by optimizing

systemc simulation time,” Faculty of Electrical and Computer Eng.,
School of Engineering, University of Tehran.

[6] N. Blanc, D. Kroening, and N. Sharygina, “Scoot : A tool for
the analysis of systemc models,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science, C. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer
Berlin / Heidelberg, 2008, pp. 467–470, 10.1007/978-3-540-78800-3_36.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-78800-3_36

[7] Y. N. Naguib and R. S. Guindi, “Speeding up systemc simulation
through process splitting,” in Proceedings of the conference on Design,
automation and test in Europe, ser. DATE ’07. San Jose, CA,
USA: EDA Consortium, 2007, pp. 111–116. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1266366.1266392

[8] A. Buchmann, R.; Greiner, “A fully static scheduling approach for fast
cycle accurate systemc simulation of mpsocs,” in Microelectronics, 2007.
ICM 2007. Internatonal Conference on, LIP6/UPMC, Univ. Pierre et
Marie Curie, Paris, 2007, pp. 101 – 104.

[9] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[10] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,”
Master’s thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, Dec 2002, See
http://llvm.cs.uiuc.edu.

[11] C. McConnell and R. E. Johnson, “Using static single
assignment form in a code optimizer,” ACM Lett. Program.
Lang. Syst., vol. 1, pp. 152–160, June 1992. [Online]. Available:
http://doi.acm.org/10.1145/151333.151368

[12] J. Aycock, “A brief history of just-in-time,” ACM Comput.
Surv., vol. 35, pp. 97–113, June 2003. [Online]. Available:
http://doi.acm.org/10.1145/857076.857077

[13] M. P. Plezbert and R. K. Cytron, “Does ’just in time’ = ’better late
than never’?” in Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ser. POPL ’97.
New York, NY, USA: ACM, 1997, pp. 120–131. [Online]. Available:
http://doi.acm.org/10.1145/263699.263713

[14] K. Marquet and M. Moy, “PinaVM: a SystemC front-end based on
an executable intermediate representation,” in International Conference
on Embedded Software International Conference on Embedded
Software, Scottsdale, USA, 10 2010, p. 79, SD B.4.4, I.6.4,
D.2.4 OpenTLM (projet Minalogic). [Online]. Available: http://www-
verimag.imag.fr/ moy/publications/pinavm-emsoft.pdf

[15] “Osci tlm-2.0 language reference manual,” 2009. [Online]. Available:
www.systemc.org

[16] J. P. Adam Rose, Stuart Swan, “Transaction level modeling in systemc.”
[17] S. Pasricha, “Transaction level modeling of soc with systemc 2.0.”

