
SystemC Front-Ends Existing Conclusion

A Theoretical and Experimental Review of
SystemC Front-ends

Kevin Marquet Matthieu Moy Bageshri Karkare

Verimag (Grenoble INP)
Grenoble
France

FDL, September 15th 2010

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 1 / 25 >

SystemC Front-Ends Existing Conclusion

Summary

1 SystemC

2 SystemC Front-Ends

3 Existing SystemC front-ends

4 Conclusion

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 2 / 25 >

SystemC Front-Ends Existing Conclusion

SystemC

Industry-standard for high-level modeling (TLM, . . .) of
Systems-on-a-Chip,
Library for C++ (compile with g++ -lsystemc. . .)

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 3 / 25 >

SystemC Front-Ends Existing Conclusion

SystemC: Example

N1 N2

SC_MODULE(not_gate) {
sc_in<bool> in;
sc_out<bool> out;

void compute (void) {
// Behavior
bool val = in.read();
out.write(!val);

}

SC_CTOR(not_gate) {
SC_METHOD(compute);
sensitive << in;

}
};

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;

// Binding
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 4 / 25 >

SystemC Front-Ends Existing Conclusion

Summary

1 SystemC

2 SystemC Front-Ends

3 Existing SystemC front-ends

4 Conclusion

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 5 / 25 >

SystemC Front-Ends Existing Conclusion

This section

2 SystemC Front-Ends
Applications
Difficulties
Approaches

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 6 / 25 >

SystemC Front-Ends Existing Conclusion

When you don’t need a front-end

Main application of SystemC: Simulation
I Just need a C++ compiler + the library

Testing, run-time verification, monitoring. . .
I (Small) modifications of the SystemC library

IDE integration, Debugging . . .
I Plain C++ front-ends can do most of the job.

No reference front-end available on
http://www.systemc.org/

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 7 / 25 >

http://www.systemc.org/

SystemC Front-Ends Existing Conclusion

When you don’t need a front-end

Main application of SystemC: Simulation
I Just need a C++ compiler + the library

Testing, run-time verification, monitoring. . .
I (Small) modifications of the SystemC library

IDE integration, Debugging . . .
I Plain C++ front-ends can do most of the job.

No reference front-end available on
http://www.systemc.org/

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 7 / 25 >

http://www.systemc.org/

SystemC Front-Ends Existing Conclusion

When you really need a front-end

Symbolic formal verification, High-level synthesis

I Need to extract almost everything about the platform

Visualization

I Need to extract the architecture. Behavior is less important

Introspection

I Information about the module (Architecture) + possibly local
variables (Behavior)

SystemC-specific Compiler Optimizations

I Can use architecture information to optimize the behavior

Advanced debugging features (architecture→ source code, . . .)

I Needs the architecture and behavior

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 8 / 25 >

SystemC Front-Ends Existing Conclusion

When you really need a front-end

Symbolic formal verification, High-level synthesis
I Need to extract almost everything about the platform

Visualization

I Need to extract the architecture. Behavior is less important

Introspection

I Information about the module (Architecture) + possibly local
variables (Behavior)

SystemC-specific Compiler Optimizations

I Can use architecture information to optimize the behavior

Advanced debugging features (architecture→ source code, . . .)

I Needs the architecture and behavior

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 8 / 25 >

SystemC Front-Ends Existing Conclusion

When you really need a front-end

Symbolic formal verification, High-level synthesis
I Need to extract almost everything about the platform

Visualization
I Need to extract the architecture. Behavior is less important

Introspection

I Information about the module (Architecture) + possibly local
variables (Behavior)

SystemC-specific Compiler Optimizations

I Can use architecture information to optimize the behavior

Advanced debugging features (architecture→ source code, . . .)

I Needs the architecture and behavior

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 8 / 25 >

SystemC Front-Ends Existing Conclusion

When you really need a front-end

Symbolic formal verification, High-level synthesis
I Need to extract almost everything about the platform

Visualization
I Need to extract the architecture. Behavior is less important

Introspection
I Information about the module (Architecture) + possibly local

variables (Behavior)
SystemC-specific Compiler Optimizations

I Can use architecture information to optimize the behavior

Advanced debugging features (architecture→ source code, . . .)

I Needs the architecture and behavior

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 8 / 25 >

SystemC Front-Ends Existing Conclusion

When you really need a front-end

Symbolic formal verification, High-level synthesis
I Need to extract almost everything about the platform

Visualization
I Need to extract the architecture. Behavior is less important

Introspection
I Information about the module (Architecture) + possibly local

variables (Behavior)
SystemC-specific Compiler Optimizations

I Can use architecture information to optimize the behavior
Advanced debugging features (architecture→ source code, . . .)

I Needs the architecture and behavior

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 8 / 25 >

SystemC Front-Ends Existing Conclusion

When you really need a front-end

Symbolic formal verification, High-level synthesis
I Need to extract almost everything about the platform

Visualization
I Need to extract the architecture. Behavior is less important

Introspection
I Information about the module (Architecture) + possibly local

variables (Behavior)
SystemC-specific Compiler Optimizations

I Can use architecture information to optimize the behavior
Advanced debugging features (architecture→ source code, . . .)

I Needs the architecture and behavior

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 8 / 25 >

SystemC Front-Ends Existing Conclusion

This section

2 SystemC Front-Ends
Applications
Difficulties
Approaches

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 9 / 25 >

SystemC Front-Ends Existing Conclusion

Difficulties Writing SystemC Front-Ends
1 C++ is complex (e.g. clang ≈ 200,000 LOC)
2 Architecture is built at runtime, with C++ code

SC_MODULE(not_gate) {
sc_in<bool> in;
sc_out<bool> out;

void compute (void) {
// Behavior
bool val = in.read();
out.write(!val);

}

SC_CTOR(not_gate) {
SC_METHOD(compute);
sensitive << in;

}
};

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;

// Binding
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 10 / 25 >

SystemC Front-Ends Existing Conclusion

This section

2 SystemC Front-Ends
Applications
Difficulties
Approaches

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 11 / 25 >

SystemC Front-Ends Existing Conclusion

Dealing with the complexity of C++

Write a new C++ front-end (lex+yac, . . .)
I Either huge effort, or many limitations

Reuse one
I EDG: Good, expansive C++ front-end
I GNU g++: Good C++ support, but hard to use as a front-end
I clang (part of LLVM): Good C++ support (recent), modular
I . . .

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 12 / 25 >

SystemC Front-Ends Existing Conclusion

Dealing with the architecture

Static approach:
Analyze the elaboration,
and find out the
architecture

I Usually very limited wrt.
complexity of the
elaboration code

Dynamic approach:
Execute the elaboration,
and see the result

I Few limitations
I Main difficulty: link

Behavior↔ Architecture.

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;

// Binding
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 13 / 25 >

SystemC Front-Ends Existing Conclusion

Dealing with the architecture
When it becomes tricky. . .

int sc_main(int argc, char **argv) {
int n = atoi(argv[1]);
int m = atoi(argv[2]);
Node array[n][m];
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
array[i][j]

= new Node(...);
...

}
}

sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 14 / 25 >

SystemC Front-Ends Existing Conclusion

Dealing with the architecture
When it becomes tricky. . .

Static approach: cannot
deal with such code
Dynamic approach: can
extract the architecture for
individual instances of the
system

int sc_main(int argc, char **argv) {
int n = atoi(argv[1]);
int m = atoi(argv[2]);
Node array[n][m];
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
array[i][j]

= new Node(...);
...

}
}

sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 14 / 25 >

SystemC Front-Ends Existing Conclusion

Dealing with the architecture
When it becomes very tricky. . .

void compute(void) {
for (int i = 0; i < n; i++) {

ports[i].write(true);
}
...

}

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 15 / 25 >

SystemC Front-Ends Existing Conclusion

Dealing with the architecture
When it becomes very tricky. . .

One can unroll the loop to
let i become constant,
Undecidable in the general
case.

void compute(void) {
for (int i = 0; i < n; i++) {

ports[i].write(true);
}
...

}

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 15 / 25 >

SystemC Front-Ends Existing Conclusion

Summary

1 SystemC

2 SystemC Front-Ends

3 Existing SystemC front-ends

4 Conclusion

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 16 / 25 >

SystemC Front-Ends Existing Conclusion

Existing SystemC front-ends
An attempt at classification

Static Dynamic

Home-made parser
KaSCPar, sc2v,
ParSyC, Scoot,
SystemPerl. . .

Existing parser SystemCXML DATE091,
Pinapa, PinaVM

Hard to classify: Quiny (purely dynamic approach)
Commercial tools (closed, not detailed here): Synopsys, Semantic
Design, NC-SystemC (Cadence)

1Overcoming limitations of the SystemC data introspection, Christian Genz and
Rolf Drechsler

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 17 / 25 >

SystemC Front-Ends Existing Conclusion

Who should read the paper?

Targeted reader: People in need of a SystemC front-end to build a
research tool

I To use an existing one
⇒ emphasis on available/open tools

I To build a new one
⇒ description of the challenges and approaches

Content:
I Summary and bibliography for each front-end
I A small but representative testsuite (public)
I Experimental results

Disclaimer: paper written by authors of 2 front-ends
(Pinapa and PinaVM)

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 18 / 25 >

SystemC Front-Ends Existing Conclusion

Who should read the paper?

Targeted reader: People in need of a SystemC front-end to build a
research tool

I To use an existing one
⇒ emphasis on available/open tools

I To build a new one
⇒ description of the challenges and approaches

Content:
I Summary and bibliography for each front-end
I A small but representative testsuite (public)
I Experimental results

Disclaimer: paper written by authors of 2 front-ends
(Pinapa and PinaVM)

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 18 / 25 >

SystemC Front-Ends Existing Conclusion

Who should read the paper?

Targeted reader: People in need of a SystemC front-end to build a
research tool

I To use an existing one
⇒ emphasis on available/open tools

I To build a new one
⇒ description of the challenges and approaches

Content:
I Summary and bibliography for each front-end
I A small but representative testsuite (public)
I Experimental results

Disclaimer: paper written by authors of 2 front-ends
(Pinapa and PinaVM)

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 18 / 25 >

SystemC Front-Ends Existing Conclusion

Conclusions of the Review

Very limited front-ends: KaSCPar, sc2v, SystemPerl,
SystemCXML, Quiny
Not available: ParSyC, DATE09
Remaining candidates for research tools:

I Scoot: close-source (but authors opened to discussion), good
SystemC/C++ support

I Pinapa: open-source, very few limitations, but painful to install
I PinaVM (new, not in the paper): open-source, very few theoretical

limitations, still at prototype stage.

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 19 / 25 >

SystemC Front-Ends Existing Conclusion

Scoot

Static scheduling based on model-checking and partial order
reduction
In-house C++ front-end, but good in our experience

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 20 / 25 >

SystemC Front-Ends Existing Conclusion

Pinapa

Front-end of the tool LusSy: connection of SystemC to various
model-checkers
Based on GCC to support C++
Executes the elaboration, link the result to the syntax tree

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 21 / 25 >

SystemC Front-Ends Existing Conclusion

PinaVM

Connection of SystemC to various model-checkers
Based on the LLVM compiler infrastructure (uses llvm-g++ as
the front-end)
Relies on Just-In-Time compilation to link the architecture and the
behavior

See you at Emsoft for the details ;-)

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 22 / 25 >

SystemC Front-Ends Existing Conclusion

PinaVM

Connection of SystemC to various model-checkers
Based on the LLVM compiler infrastructure (uses llvm-g++ as
the front-end)
Relies on Just-In-Time compilation to link the architecture and the
behavior
See you at Emsoft for the details ;-)

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 22 / 25 >

SystemC Front-Ends Existing Conclusion

Summary

1 SystemC

2 SystemC Front-Ends

3 Existing SystemC front-ends

4 Conclusion

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 23 / 25 >

SystemC Front-Ends Existing Conclusion

Conclusion

Writing a (good) SystemC front-end = surprisingly difficult task
Experimental and theoretical comparison of existing SystemC
front-ends presented
Lots of candidates, none 100% satisfactory

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 24 / 25 >

SystemC Front-Ends Existing Conclusion

Questions?

Matthieu Moy (Verimag) Review of SystemC front-ends FDL, September 15th 2010 < 25 / 25 >

	SystemC
	SystemC Front-Ends
	Applications
	Difficulties
	Approaches

	Existing SystemC front-ends
	Conclusion

