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CASH: Topics - People

Optimized (software/hardware) compilation for HPC software
with data-intensive computations.
 Means: dataflow IR, static analyses, optimisations,
simulation.

Sequential
Program

Parallel
Program

H
P

C
A

p
p

lic
at

io
n

s Parallelism
Extraction Intermediate

Parallel
Representation

Code
Generation

Hardware
(FPGA)

Software
(CPU & accelerators)

Optimization

Dataflow Semantics

Analysis
Abstract

Interpretation

Simulation

Polyhedral
Model

Christophe Alias, Laure Gonnord, Ludovic Henrio, Matthieu
Moy http://www.ens-lyon.fr/LIP/CASH/



Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

2 / 28



Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

3 / 28



Time-critical, compute intensive applications

◦ Hard Real-Time: we must guarantee that task execution completes before deadline

◦ Compute-intensive

◦ Space/power bounded
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Performance Vs Predictability

Predictable

Fast

68000

PowerPC

i7

GPU

Many Core
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Many-core
=

Lots of simple cores

Kalray MPPA (Massively Parallel Processor Array):

◦ 256 cores

◦ No cache consistency

◦ No out-of-order execution

◦ No branch prediction

◦ No timing anomaly

◦ Predictable NoC

⇒ good �t for real-time?
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Kalray's business model
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Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model
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Execution of Synchronous Data Flow Programs

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Single-core

static non-preemptive scheduling

Industrialized as SCADE (1993)

heavily used in avionics and nuclear

� �
int main_app(i1, i2)
{

na = NA(i1);
ne = NE(i2);
nb = NB(na);

nd = ND(na);

nf = NF(ne);

o = NC(nb ,nd ,nf);

return o;
}� �
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code generation

Multi/Many-core

static non-preemptive scheduling

int NF (...)

{

// task τ6
return (...);

}

int NE (...)

{

// task τ5
return (...);

}

int ND (...)

{

// task τ4
return (...);

}

int NC (...)

{

// task τ3
return (...);

}

int NB (...)

{

// task τ2
return (...);

}

int NA (...)

{

// task τ1
return (...);

}
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Parallel code generation from Lustre/SCADE (pseudo-code)

τ0

NA
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NC
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NF

i0

i1

o

� �
// Generated by SCADE KCG

void NA(ctx_a *ctx) {

// ... computation ...

}

void NA_wrapper(ctx_a *ctx) {

RECV_NA(i0);

NA(ctx);

SEND_NA_NB (...);

}� �

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

� �
// Generated by us

void worker_PE0(void) {

ctx_a ctxa; ctx_b ctxb;

while (1) {

NA_wrapper (&ctxa);

wait(release_t2);

NB_wrapper (&ctxb);

wait(end_of_period);

}

}

#define RECV_NA(data) ...� �11 / 28



Contribution

◦ Previous work:

◦ Predictable execution model within each cluster
◦ Mathematical model of arbitration for memory accesses
◦ Algorithm to compute a time-triggered schedule (�x-point resolution)

◦ This talk:

◦ Multi-cluster application
◦ Time-triggered schedule taking Network on Chip (NoC) accesses into account
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Architecture Model
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◦ Kalray MPPA 256 Bostan

◦ 16 compute clusters + 4 I/O clusters

◦ Dual NoC (Network on Chip)
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Execution Model: Within a Cluster
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P0

P1
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arbiter

arbiter

arbiter

b0

b1
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memory bank
(128 KB)

◦ Tasks mapping on cores

◦ Static non-preemptive scheduling

◦ Spatial Isolation

di�erent tasks go to di�erent memory banks

◦ Interference from communications

◦ Execution model:

◦ execute in a �local� bank
◦ write to a �remote� bank
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NoC Communications

b0

b1

P0

P1

RX TX

b0

b1

P0

P1

RX TXNoC

1

2 3

4

5

Steps:

1 Read from memory
2 Write to TX's bu�er
3 Start NoC transfer
4 Data transmission through the NoC
5 Write to memory

Interference:

1 Same as other reads
2 , 3 One TX channel per sender
⇒ independent accesses.

4 Interferences in each router
→ network calculus

5 High-priority interference ⇒ B
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Application Model and Interferences
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Previous work:
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Reminder: NoC Communications
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Interference:

1 Same as other reads
2 , 3 One TX channel per sender
⇒ independent accesses.

4 Interferences in each router
→ network calculus

5 High-priority interference ⇒ B

Issue:

Predict the possible execution time of 5 as
precisely as possible.
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Example Tasks with NoC Transmission
Issue 1: overapproximation of RX execution interval

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1

NoC reception

Task 2

◦ Issue:

◦ NoC reception starts after
BCETa(computation before
sending) + BCET(transmission of
�rst �it)

◦ We don't have the BCET
⇒ large overapproximation for RX
tasks

◦ Solution: Split sending task

◦ Compute: no NoC access
◦ Copy to TX (Cpy): write to the
TX's bu�er

◦ Start NoC transfer (EOT): write to
TX's control register

aBest Case Execution Time
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Example Tasks with NoC Transmission
Issue 2: circular dependency

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1 C
py

E
O
T

1

NoC reception (RX1)

Task 2 C
py

E
O
T

2

NoC reception (RX2)

◦ Issue:

◦ WCRT(RX1) = WCRT(EOT1) +
WCTT(1 → 0)

◦ WCRT(EOT1) depends on
WCRT(RX2), which depends on
WCRT(EOT2) which depends on
WCRT(RX1)

◦ ⇒ �x-point

◦ Solution: get rid of interference
on EOT

◦ EOT = only one control register
access

◦ Preload code to avoid instruction
cache miss
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3-phase Tasks Analysis

◦ Compute:

◦ Fits in previous work model

◦ Copy to TX:

◦ Force non-interfering schedule (add arti�cial dependencies if needed)

◦ Start NoC transfer (EOT):

◦ No interference

◦ On the RX side:

◦ RX can only start after �Start NoC transfer� has started
⇒ edge from �Copy to TX� to �RX� in the task dependency graph.
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Example Application: Naive Schedule
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Example Application: Improved Schedule
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Recap

Task WCRT Release date
Naive Improved Naive Improved

Application 680 650

RX1 230 120 0 220

RX2 580 350 0 200

n3 180 160 0 0

n4 120 120 180 160

n2 100 100 10 0

n5 100 100 580 550

n8 100 100 330 340

n1 110 110 0 0

n6 100 100 0 0

n7 100 100 100 100

n9 100 100 220 220

n10 100 100 240 240

Cpy1 110 110 110 110

Cpy2 100 100 100 100

EOT1 20 20 220 220

EOT2 20 20 200 200
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Conclusion and Future Work

◦ Code generation and real-time analysis for many-core (Kalray MPPA 256)
= major challenge for industry and research

◦ Hard Real-Time ⇒ simplicity, predictability ⇒ static, time-driven schedule

◦ Critical ⇒ traceability ⇒ no aggressive optimization

◦ Our work:

◦ Understand and model the precise architecture of MPPA
◦ Extension of Multi-Core Response Time Analysis framework
◦ Integration analysis ↔ code generation

◦ Future Work:

◦ Model Kalray MPPA3 chip (new NoC, new arbiters)
◦ Improve the static scheduling algorithm: O(n4) currently, we can do better.
◦ Integration with RTOS?
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Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

1Altmeyer et al., RTNS 2015
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The Global Picture
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