
Response Time Analysis of Data�ow Applications
on a Many-Core Processor

with Shared-Memory and Network-on-Chip

Matthieu Moy

LIP (Univ. Lyon 1)

November 2018

1 / 28

CASH: Topics - People

Optimized (software/hardware) compilation for HPC software
with data-intensive computations.
 Means: dataflow IR, static analyses, optimisations,
simulation.

Sequential
Program

Parallel
Program

H
P

C
A

p
p

lic
at

io
n

s Parallelism
Extraction Intermediate

Parallel
Representation

Code
Generation

Hardware
(FPGA)

Software
(CPU & accelerators)

Optimization

Dataflow Semantics

Analysis
Abstract

Interpretation

Simulation

Polyhedral
Model

Christophe Alias, Laure Gonnord, Ludovic Henrio, Matthieu
Moy http://www.ens-lyon.fr/LIP/CASH/

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

2 / 28

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

3 / 28

Time-critical, compute intensive applications

◦ Hard Real-Time: we must guarantee that task execution completes before deadline

◦ Compute-intensive

◦ Space/power bounded

4 / 28

Performance Vs Predictability

Predictable

Fast

68000

PowerPC

i7

GPU

Many Core

5 / 28

Many-core
=

Lots of simple cores

Kalray MPPA (Massively Parallel Processor Array):

◦ 256 cores

◦ No cache consistency

◦ No out-of-order execution

◦ No branch prediction

◦ No timing anomaly

◦ Predictable NoC

⇒ good �t for real-time?

6 / 28

Many-core
=

Lots of simple cores
Kalray MPPA (Massively Parallel Processor Array):

◦ 256 cores

◦ No cache consistency

◦ No out-of-order execution

◦ No branch prediction

◦ No timing anomaly

◦ Predictable NoC

⇒ good �t for real-time?

6 / 28

Kalray's business model

7 / 28

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

8 / 28

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

8 / 28

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

8 / 28

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

8 / 28

Hard Real-Time on Many-Core

High-level Data-Flow Application Model
Synchronous hypothesis:

computation/communication in 0-time

Network On Chip
Communication takes time

Shared Memory within Cluster
Interferences between tasks

Individual Cores
Cache, Pipeline, . . .

I1

I2

T1 T2

T3

O1

O2

 Take into account all levels
in Worst-Case Execution Time (WCET) analysis

and programming model

8 / 28

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

9 / 28

Execution of Synchronous Data Flow Programs

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Single-core

static non-preemptive scheduling

Industrialized as SCADE (1993)

heavily used in avionics and nuclear

� �
int main_app(i1, i2)
{

na = NA(i1);
ne = NE(i2);
nb = NB(na);

nd = ND(na);

nf = NF(ne);

o = NC(nb ,nd ,nf);

return o;
}� �

10 / 28

Execution of Synchronous Data Flow Programs

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

High level representation

3 Respect the dependency
constraints

3 Set the release dates to get
precise upper bounds
on the interference

code generation

Multi/Many-core

static non-preemptive scheduling

int NF (...)

{

// task τ6
return (...);

}

int NE (...)

{

// task τ5
return (...);

}

int ND (...)

{

// task τ4
return (...);

}

int NC (...)

{

// task τ3
return (...);

}

int NB (...)

{

// task τ2
return (...);

}

int NA (...)

{

// task τ1
return (...);

}

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

10 / 28

Parallel code generation from Lustre/SCADE (pseudo-code)

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

� �
// Generated by SCADE KCG

void NA(ctx_a *ctx) {

// ... computation ...

}

void NA_wrapper(ctx_a *ctx) {

RECV_NA(i0);

NA(ctx);

SEND_NA_NB (...);

}� �

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

� �
// Generated by us

void worker_PE0(void) {

ctx_a ctxa; ctx_b ctxb;

while (1) {

NA_wrapper (&ctxa);

wait(release_t2);

NB_wrapper (&ctxb);

wait(end_of_period);

}

}

#define RECV_NA(data) ...� �11 / 28

Contribution

◦ Previous work:

◦ Predictable execution model within each cluster
◦ Mathematical model of arbitration for memory accesses
◦ Algorithm to compute a time-triggered schedule (�x-point resolution)

◦ This talk:

◦ Multi-cluster application
◦ Time-triggered schedule taking Network on Chip (NoC) accesses into account

12 / 28

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

13 / 28

Architecture Model

I/
O

E
th
er
ne
t
0 I/O

E
thernet

1

I/O DDR 0

I/O DDR 1

◦ Kalray MPPA 256 Bostan

◦ 16 compute clusters + 4 I/O clusters

◦ Dual NoC (Network on Chip)

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority

G3

G2

G1

14 / 28

Architecture Model
I/
O

E
th
er
ne
t
0 I/O

E
thernet

1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
a
re
d
m
e
m
o
ry

b
a
n
k
s 8

sh
a
re
d
m
e
m
o
ry

b
a
n
k
s

Per cluster:

◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total size: 2 MB)

◦ Multi-level bus arbiter per memory bank

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority

G3

G2

G1

14 / 28

Architecture Model
I/
O

E
th
er
ne
t
0 I/O

E
thernet

1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
a
re
d
m
e
m
o
ry

b
a
n
k
s 8

sh
a
re
d
m
e
m
o
ry

b
a
n
k
s

Per cluster:

◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total size: 2 MB)

◦ Multi-level bus arbiter per memory bank

Rx

Tx

DSU

RM

P15

P0

RR
3→1

RR
16→1

RR
2→1

FP
shared
memory
bank

high priority

G3

G2

G1

14 / 28

Execution Model: Within a Cluster

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
a
re
d
m
e
m
o
ry

b
a
n
k
s 8

sh
a
re
d
m
e
m
o
ry

b
a
n
k
s

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores

◦ Static non-preemptive scheduling

◦ Spatial Isolation

di�erent tasks go to di�erent memory banks

◦ Interference from communications

◦ Execution model:

◦ execute in a �local� bank
◦ write to a �remote� bank

15 / 28

Execution Model: Within a Cluster

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
a
re
d
m
e
m
o
ry

b
a
n
k
s 8

sh
a
re
d
m
e
m
o
ry

b
a
n
k
s

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores

◦ Static non-preemptive scheduling

◦ Spatial Isolation

di�erent tasks go to di�erent memory banks

◦ Interference from communications

◦ Execution model:

◦ execute in a �local� bank
◦ write to a �remote� bank

15 / 28

Execution Model: Within a Cluster

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
a
re
d
m
e
m
o
ry

b
a
n
k
s 8

sh
a
re
d
m
e
m
o
ry

b
a
n
k
s

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores

◦ Static non-preemptive scheduling

◦ Spatial Isolation

di�erent tasks go to di�erent memory banks

◦ Interference from communications

◦ Execution model:

◦ execute in a �local� bank
◦ write to a �remote� bank

15 / 28

Execution Model: Within a Cluster

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
a
re
d
m
e
m
o
ry

b
a
n
k
s 8

sh
a
re
d
m
e
m
o
ry

b
a
n
k
s

P0

P1

P2

arbiter

arbiter

arbiter

b0

b1

b2

memory bank
(128 KB)

◦ Tasks mapping on cores

◦ Static non-preemptive scheduling

◦ Spatial Isolation

di�erent tasks go to di�erent memory banks

◦ Interference from communications

◦ Execution model:

◦ execute in a �local� bank
◦ write to a �remote� bank

15 / 28

NoC Communications

b0

b1

P0

P1

RX TX

b0

b1

P0

P1

RX TXNoC

1

2 3

4

5

Steps:

1 Read from memory
2 Write to TX's bu�er
3 Start NoC transfer
4 Data transmission through the NoC
5 Write to memory

Interference:

1 Same as other reads
2 , 3 One TX channel per sender
⇒ independent accesses.

4 Interferences in each router
→ network calculus

5 High-priority interference ⇒ B

16 / 28

NoC Communications

b0

b1

P0

P1

RX TX

b0

b1

P0

P1

RX TXNoC

1

2 3

4

5

Steps:

1 Read from memory
2 Write to TX's bu�er
3 Start NoC transfer
4 Data transmission through the NoC
5 Write to memory

Interference:

1 Same as other reads
2 , 3 One TX channel per sender
⇒ independent accesses.

4 Interferences in each router
→ network calculus

5 High-priority interference ⇒ B

16 / 28

NoC Communications

b0

b1

P0

P1

RX TX

b0

b1

P0

P1

RX TXNoC

1

2 3

4

5

Steps:

1 Read from memory
2 Write to TX's bu�er
3 Start NoC transfer
4 Data transmission through the NoC
5 Write to memory

Interference:

1 Same as other reads
2 , 3 One TX channel per sender
⇒ independent accesses.

4 Interferences in each router
→ network calculus

5 High-priority interference ⇒ B

16 / 28

Application Model and Interferences

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph

◦ Mono-rate

◦ Fixed mapping and execution order

◦ For each task τi:

WCRTi = WCETi +
∑
j 6=i
interferencei,j

t

00 40 80 120 160

Processor Demand

Memory/TX access time

reli

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

Previous work:

17 / 28

Application Model and Interferences

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph

◦ Mono-rate

◦ Fixed mapping and execution order

◦ For each task τi:

WCRTi = WCETi +
∑
j 6=i
interferencei,j

t

00 40 80 120 160

Processor Demand

Memory/TX access time

reli

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

Previous work:

17 / 28

Application Model and Interferences

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph

◦ Mono-rate

◦ Fixed mapping and execution order

◦ For each task τi:

WCRTi = WCETi +
∑
j 6=i
interferencei,j

t

00 40 80 120 160

Processor Demand

Memory/TX access time

reli

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

Previous work:

17 / 28

Application Model and Interferences

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph

◦ Mono-rate

◦ Fixed mapping and execution order

◦ For each task τi:

WCRTi = WCETi +
∑
j 6=i
interferencei,j

t

00 40 80 120 160

Processor Demand

Memory/TX access time

reli

Ri

Isolation

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

Previous work:

17 / 28

Application Model and Interferences

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph

◦ Mono-rate

◦ Fixed mapping and execution order

◦ For each task τi:

WCRTi = WCETi +
∑
j 6=i
interferencei,j

t

00 40 80 120 160

Processor Demand

Memory/TX access time

reli

Ri

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

Previous work:

17 / 28

Application Model and Interferences

τ0

NA

τ1

NB

τ2

NC

τ3

ND

τ4

NE

τ5

NF

i0

i1

o ◦ Directed Acyclic Task Graph

◦ Mono-rate

◦ Fixed mapping and execution order

◦ For each task τi:

WCRTi = WCETi +
∑
j 6=i
interferencei,j

t

00 40 80 120 160

Processor Demand

Memory/TX access time

reli

Ri

Interference

E

E
0

Find Ri (including the interference)
Find reli respecting precedence constraints

Previous work:

17 / 28

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

18 / 28

Reminder: NoC Communications

b0

b1

P0

P1

RX TX

b0

b1

P0

P1

RX TXNoC

1

2 3

4

5

Interference:

1 Same as other reads
2 , 3 One TX channel per sender
⇒ independent accesses.

4 Interferences in each router
→ network calculus

5 High-priority interference ⇒ B

Issue:

Predict the possible execution time of 5 as
precisely as possible.

19 / 28

Reminder: NoC Communications

b0

b1

P0

P1

RX TX

b0

b1

P0

P1

RX TXNoC

1

2 3

4

5

Interference:

1 Same as other reads
2 , 3 One TX channel per sender
⇒ independent accesses.

4 Interferences in each router
→ network calculus

5 High-priority interference ⇒ B

Issue:

Predict the possible execution time of 5 as
precisely as possible.

19 / 28

Example Tasks with NoC Transmission
Issue 1: overapproximation of RX execution interval

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1

NoC reception

Task 2

◦ Issue:

◦ NoC reception starts after
BCETa(computation before
sending) + BCET(transmission of
�rst �it)

◦ We don't have the BCET
⇒ large overapproximation for RX
tasks

◦ Solution: Split sending task

◦ Compute: no NoC access
◦ Copy to TX (Cpy): write to the
TX's bu�er

◦ Start NoC transfer (EOT): write to
TX's control register

aBest Case Execution Time

20 / 28

Example Tasks with NoC Transmission
Issue 1: overapproximation of RX execution interval

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1

NoC reception

Task 2

◦ Issue:

◦ NoC reception starts after
BCETa(computation before
sending) + BCET(transmission of
�rst �it)

◦ We don't have the BCET
⇒ large overapproximation for RX
tasks

◦ Solution: Split sending task

◦ Compute: no NoC access
◦ Copy to TX (Cpy): write to the
TX's bu�er

◦ Start NoC transfer (EOT): write to
TX's control register

aBest Case Execution Time

20 / 28

Example Tasks with NoC Transmission
Issue 1: overapproximation of RX execution interval

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1

NoC reception (worst-case)

Task 2

◦ Issue:

◦ NoC reception starts after
BCETa(computation before
sending) + BCET(transmission of
�rst �it)

◦ We don't have the BCET
⇒ large overapproximation for RX
tasks

◦ Solution: Split sending task

◦ Compute: no NoC access
◦ Copy to TX (Cpy): write to the
TX's bu�er

◦ Start NoC transfer (EOT): write to
TX's control register

aBest Case Execution Time

20 / 28

Example Tasks with NoC Transmission
Issue 1: overapproximation of RX execution interval

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1 C
py

E
O
T

NoC reception

Task 2

◦ Issue:

◦ NoC reception starts after
BCETa(computation before
sending) + BCET(transmission of
�rst �it)

◦ We don't have the BCET
⇒ large overapproximation for RX
tasks

◦ Solution: Split sending task

◦ Compute: no NoC access
◦ Copy to TX (Cpy): write to the
TX's bu�er

◦ Start NoC transfer (EOT): write to
TX's control register

aBest Case Execution Time

20 / 28

Example Tasks with NoC Transmission
Issue 2: circular dependency

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1 C
py

E
O
T

1

NoC reception (RX1)

Task 2 C
py

E
O
T

2

NoC reception (RX2)

◦ Issue:

◦ WCRT(RX1) = WCRT(EOT1) +
WCTT(1 → 0)

◦ WCRT(EOT1) depends on
WCRT(RX2), which depends on
WCRT(EOT2) which depends on
WCRT(RX1)

◦ ⇒ �x-point

◦ Solution: get rid of interference
on EOT

◦ EOT = only one control register
access

◦ Preload code to avoid instruction
cache miss

21 / 28

Example Tasks with NoC Transmission
Issue 2: circular dependency

P0

RX

P0

RX

Cluster 0

Cluster 1

Task 1 C
py

E
O
T

1

NoC reception (RX1)

Task 2 C
py

E
O
T

2

NoC reception (RX2)

◦ Issue:

◦ WCRT(RX1) = WCRT(EOT1) +
WCTT(1 → 0)

◦ WCRT(EOT1) depends on
WCRT(RX2), which depends on
WCRT(EOT2) which depends on
WCRT(RX1)

◦ ⇒ �x-point

◦ Solution: get rid of interference
on EOT

◦ EOT = only one control register
access

◦ Preload code to avoid instruction
cache miss

21 / 28

3-phase Tasks Analysis

◦ Compute:

◦ Fits in previous work model

◦ Copy to TX:

◦ Force non-interfering schedule (add arti�cial dependencies if needed)

◦ Start NoC transfer (EOT):

◦ No interference

◦ On the RX side:

◦ RX can only start after �Start NoC transfer� has started
⇒ edge from �Copy to TX� to �RX� in the task dependency graph.

22 / 28

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

23 / 28

Example Application: Naive Schedule

P1

P0

RX

P1

P0

RX

Cluster 0

Cluster 1

RX1

RX2

n3 n4

n2

n5

n8

n1

n6 n7

n9

n10Cpy1

Cpy2

E
O
T

1
E
O
T

2

24 / 28

Example Application: Improved Schedule

P1

P0

RX

P1

P0

RX

Cluster 0

Cluster 1

RX1

RX2

n3 n4

n2

n5

n8

n1

n6 n7

n9

n10Cpy1

Cpy2

E
O
T

1
E
O
T

2

25 / 28

Recap

Task WCRT Release date
Naive Improved Naive Improved

Application 680 650

RX1 230 120 0 220

RX2 580 350 0 200

n3 180 160 0 0

n4 120 120 180 160

n2 100 100 10 0

n5 100 100 580 550

n8 100 100 330 340

n1 110 110 0 0

n6 100 100 0 0

n7 100 100 100 100

n9 100 100 220 220

n10 100 100 240 240

Cpy1 110 110 110 110

Cpy2 100 100 100 100

EOT1 20 20 220 220

EOT2 20 20 200 200

Naive:

P1

P0

RX

P1

P0

RX

Cluster 0

Cluster 1

RX1

RX2

n3 n4

n2

n5

n8

n1

n6 n7

n9

n10Cpy1

Cpy2

E
O
T

1
E
O
T

2

Improved:

P1

P0

RX

P1

P0

RX

Cluster 0

Cluster 1

RX1

RX2

n3 n4

n2

n5

n8

n1

n6 n7

n9

n10Cpy1

Cpy2

E
O
T

1
E
O
T

2

26 / 28

Outline

1 Critical, Real-Time and Many-Core

2 Parallel code generation and analysis

3 Models De�nition

4 Interferences and NoC Communications

5 Evaluation

6 Conclusion and Future Work

27 / 28

Conclusion and Future Work

◦ Code generation and real-time analysis for many-core (Kalray MPPA 256)
= major challenge for industry and research

◦ Hard Real-Time ⇒ simplicity, predictability ⇒ static, time-driven schedule

◦ Critical ⇒ traceability ⇒ no aggressive optimization

◦ Our work:

◦ Understand and model the precise architecture of MPPA
◦ Extension of Multi-Core Response Time Analysis framework
◦ Integration analysis ↔ code generation

◦ Future Work:

◦ Model Kalray MPPA3 chip (new NoC, new arbiters)
◦ Improve the static scheduling algorithm: O(n4) currently, we can do better.
◦ Integration with RTOS?

28 / 28

BACKUP

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:

R0 = 10 + 3×10 (response time in isolation)

R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (�xed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:

R0 = 10 + 3×10 (response time in isolation)

R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (�xed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:

R0 = 10 + 3×10 (response time in isolation)

R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (�xed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:

R0 = 10 + 3×10 (response time in isolation)

R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (�xed-point)

1Altmeyer et al., RTNS 2015

The Global Picture

Static
Mapping/Scheduling

WCRT with
Interferences

Local WCRT
Analysis

Timing models
(static analysis)

Probabilistic
Models

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

+
Tasks WCRT

WC Access

	Critical, Real-Time and Many-Core
	Parallel code generation and analysis
	Models Definition
	Interferences and NoC Communications
	Evaluation
	Conclusion and Future Work
	Appendix

