Modeling of Time in
Discrete-Event Simulation of
Systems-on-Chip

Giovanni Funchal'-? and Matthieu Moy’
"Verimag (Grenoble INP)
Grenoble, France

2STMicroelectronics
Grenoble, France

Work partially supported by
HELP ANR project

MEMOCODE, July 2011

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011

<t/22>



Outline

@ Transaction Level Modeling and jTLM
@ Time and Duration in jTLM

e Applications

e Implementation

e Conclusion

Matthieu Moy (Verimag) Modeling of Time/{TLM

MEMOCODE, July 2011

<2/22>



jTLM Duration Applications

Outline

@ Transaction Level Modeling and jTLM
Q Time and Duration in jTLM

Q Applications

Q Implementation

Q Conclusion

Matthieu Moy (Verimag) Modeling of Time/jTLM

Implementation

MEMOCODE, July 2011

Conclusion

<3/22>



jTLM Duration Applications Implementation Conclusion

Modern Systems-on-a-Chip

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <4/22 >



jTLM Duration Applications Implementation Conclusion

Modern Systems-on-a-Chip

Software

Hardware

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <4/22 >



jTLM

Transaction-Level Modeling

@ (Fast) simulation essential in the design-flow

» To write/debug software
» To validate architectural choices
» As reference for hardware verification

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011

<5/22>



jTLM

Transaction-Level Modeling

@ (Fast) simulation essential in the design-flow
» To write/debug software
» To validate architectural choices
» As reference for hardware verification
@ Transaction-Level Modeling (TLM):

» High level of abstraction
» Suitable for

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <5/22 >



jTLM

Transaction-Level Modeling

@ (Fast) simulation essential in the design-flow
» To write/debug software
» To validate architectural choices
» As reference for hardware verification
@ Transaction-Level Modeling (TLM):

» High level of abstraction
» Suitable for

Industry Standard = SystemC/TLM

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <5/22 >



jTLM Duration Applications Implementation Conclusion

SystemC/TLM vs. “TLM Abstraction Level”

SystemC TLM

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <6/22>



jTLM

SystemC/TLM vs. “TLM Abstraction Level”

SystemC TLM

Cycle
accurate

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <6/22 >



jTLM

SystemC/TLM vs. “TLM Abstraction Level”

SystemC TLM

Cycle
accurate

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <6/22 >



jTLM

SystemC/TLM vs. “TLM Abstraction Level”

SystemC TLM

Cycle
accurate

Coroutine ]
e— \

Parallelism

gl

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011

<6/22>



jTLM

SystemC/TLM vs. “TLM Abstraction Level”

SystemC TLM

Cycle
accurate

Coroutine ]
e \

Parallelism

gl

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <6/22 >



iTLM

jTLM: goals and peculiarities

@ jTLM’s goal: define “TLM” independently of SystemC
» Not cooperative (true parallelism)
» Not C++ (Java)
» No J-cycle
@ Interesting features
» Small and simple code (= 500 LOC)
» Nice experimentation platform

@ Not meant for production

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011

<7/22>



jTLM Duration Applications

Outline

@ Transaction Level Modeling and jTLM
@ Time and Duration in jTLM

Q Applications

Q Implementation

Q Conclusion

Matthieu Moy (Verimag) Modeling of Time/jTLM

Implementation

MEMOCODE, July 2011

Conclusion

<8/22>



Duration

Simulation Time Vs Wall-Clock Time

Matthieu Moy (Verimag)

Wall-clock time

S~ ‘Time

elapse

Computation

] ] ] ]

T T T T

10 20 30 40
Simulation time

Modeling of Time/iTLM MEMOCODE, July 2011

<9/22>



Duration

Time in SystemC and jTLM

®)
2 A
o
2.
& B
s P
—
=
Q

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <10/22 >



Duration

Time in SystemC and jTLM

Process A:

O A // computation
CIE.) £();
= //time taken by f
o B wait (20, SC_NS);
= P
1
=
Q

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <10/22 >



Duration

Time in SystemC and jTLM

) it (20) Process A: |
O A | // computation
E | £0);
= | | //time taken by f
o B | | wait (20, SC_NS);
= P
1
=
Q

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <10/22 >



Duration

Time in SystemC and jTLM

f)

wait (20)
LE) A
Q
o o] | |
@ | |
a)
awaitTime
= P
|
=
Q

Matthieu Moy (Verimag)

Modeling of Time/jTLM

Process A:
// computation
£0)7;

//time taken by f
wait (20, SC_NS);

Process P:

g();
awaitTime (20) ;

MEMOCODE, July 2011

<10/22 >



Duration

Time in SystemC and jTLM

f)

wait (20)
O
2 A
Q
2 gl | |
| |
a)
awaitTime
= P h) —
—
=
Q

Matthieu Moy (Verimag)

Modeling of Time/jTLM

Process A:

// computation

£0);
//time taken by f
wait (20, SC_NS);

Process P:

g();

awaitTime (20) ;
consumesTime (15)

}

h();

MEMOCODE, July 2011

{

<10/22 >



Duration

Time in SystemC and jTLM

wait (20)
O
2 A
Q
2 gl | |
| |
a)
awaitTime
= P h) —
—
= :
Q4 i) i0) P

Matthieu Moy (Verimag)

Modeling of Time/jTLM

Process A:

// computation

£0);
//time taken by f

wait (20,

Process P:

g();

awaitTime (20) ;
consumesTime (15)

}

h();

MEMOCODE, July 2011

SC_NS) ;

{

<10/22 >



Duration

Time a la SystemC: awaitTime (T)

T 4@ Time
elapse

r

@ By default, time does not pass

= instantaneous tasks +— Computation

Wall-clock time

@ awaitTime (T) : 0 10 20 30 40
let other processes execute Simulation time

for T time units
£f(); // instantaneous

awaitTime (20) ;

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <11/22 >



Duration

Task with Known Duration: consumesTime (T)

g 1 — =
@ Semantics:

» Start and end dates known consumesTime (15) {

» Actions contained in task spread in £10);

between £2();

@ Advantages: £30);

» Model closer to actual system }

» Less bugs hidden consumesTime (10) {

» Better parallelization g();

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <12/22 >



Duration

Execution of consumesTime (T)

Slow computation

Fast computation

QE) Sm:;:}lz’uon Task © Computation Task
= L/ finishes E ends finishes
X~ blocked \ ot
38 ) g | Rest of the
el LT © - platform
[0 T =
. © 4‘\ drives time
= — Task starts = Task starts
0 10 20 30 40 0 10 20 30 40
Simulation time Simulation time
— — _ idle |
Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <13/22 >



jTLM Duration Applications Implementation Conclusion

Outline

@ Transaction Level Modeling and jTLM
9 Time and Duration in jTLM

o Applications

Q Implementation

Q Conclusion

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <14/22 >



Applications
Exposing Bugs

Example bug: mis-placed synchronization:

flag = true; while(!flag)
awaitTime (5) ; awaitTime (1) ;
writeIMG () ; ” awaitTime (10);
awaitTime (10); readIMG () ;

= bug never seen in simulation

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <15/22 >



Applications
Exposing Bugs

Example bug: mis-placed synchronization:

flag = true; while(!flag)
awaitTime (5) ; awaitTime (1) ;
writeIMG () ; ” awaitTime (10);
awaitTime (10); readIMG () ;

= bug never seen in simulation

consumesTime (15) { while (!flaqg)
flag = true; awaitTime (1) ;
writeIMG () ; ” awaitTime (10) ;

} readIMG() ;

= strictly more behaviors, including the buggy one

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011

<15/22 >



P1

P2

P3

P4

Applications

Parallelization

JTLM’s Semantics

@ Simultaneous tasks run
in parallel

Matthieu Moy (Verimag)

Modeling of Time/iTLM MEMOCODE, July 2011 <16/22 >



P1

P2

P3

P4

Applications

Parallelization

JTLM’s Semantics

@ Simultaneous tasks run
in parallel

@ Non-simultaneous tasks don’t

Matthieu Moy (Verimag)

Modeling of Time/iTLM MEMOCODE, July 2011 <16/22 >



Applications

Parallelization

P1 - —
JTLM’s Semantics
P2 — —
@ Simultaneous tasks run
P3 — N in parallel
@ Non-simultaneous tasks don’t
P4 N @ Overlapping tasks do

Matthieu Moy (Verimag)

Modeling of Time/iTLM MEMOCODE, July 2011 <16/22 >



Applications

Parallelization

P1 - —
JTLM’s Semantics
P2 — —
@ Simultaneous tasks run
P3 — N in parallel
@ Non-simultaneous tasks don’t
P4 — | N @ Overlapping tasks do

@ Back to SystemC:

» Parallelizing within §-cycle = great if you have clocks
» Simulation time is the bottleneck with quantitative/fuzzy time

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <16/22 >



jTLM Duration Applications Implementation Conclusion

Outline

@ Transaction Level Modeling and jTLM
9 Time and Duration in jTLM

Q Applications

° Implementation

Q Conclusion

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <17/22 >



Implementation

Time Queue and awaitTime (T)

Process P: Process Q: Process R:
> (); »>h(); >i();
awaitTime (50); awaitTime (30); awaitTime (90) ;
g();

awaitTime (30);

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <18/22 >



Implementation

Time Queue and awaitTime (T)

awaitTime (50)

Process P: Process Q: Process R:
£(); »>h(); >i();
>awaitTime (50) ; awaitTime (30); awaitTime (90) ;
g();

awaitTime (30);

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <18/22 >



Implementation

Time Queue and awaitTime (T)

altTlme (30)

Process P: Process Q: Process R:
£0); h(); >1i();
>awaitTime (50) ; >awaitTime (30) ; awaitTime (90) ;
g();

awaitTime (30);

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <18/22 >



Implementation

Time Queue and awaitTime (T)

awaitTime (90)

Process P: Process Q: Process R:
£(); h(); i();
>awaitTime (50) ; >awaitTime (30) ; >awaitTime (90) ;
g();

awaitTime (30);

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <18/22 >



Implementation

Time Queue and awaitTime (T)

Time Elaps
Process P: Process Q: Process R:
£0); h(); i();
>awaitTime (50) ; »awaitTime (30) ; >awaitTime (90) ;
g();

awaitTime (30);

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <18/22 >



Implementation

Time Queue and awaitTime (T)

Process P: Process Q: Process R:
£0); h(); i();
>awaitTime (50) ; awaitTime (30); >awaitTime (90) ;
»>g();

awaitTime (30);

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <18/22 >



Implementation

Time Queue and awaitTime (T)

gwaitTime (30)

—

Process P: Process Q: Process R:
£0); h(); i();
»awaitTime (50) ; awaitTime (30); >awaitTime (90) ;
g();

>awaitTime (30);

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <18/22 >



Implementation

Time Queue and consumesTime (T)

What about consumesTime (T) ?

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <19/22 >



Implementation

Time Queue and consumesTime (T)

Process P: Process Q: Process R:
>£0); >1i(); »1();
consumesTime (50) { awaitTime (30); awaitTime (90) ;
gQ); 3O
} consumesTime (30) {
h(); k();
}

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

consumesTime (50)

Process P: Process Q: Process R:
£0i >i(); >1();
»consumesTime (50) { awaitTime (30); awaitTime (90) ;
gQ); 3O
} consumesTime (30) {
h(); k();
}

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

Process P: Process Q: Process R:
£0i >i(); >1();
consumesTime (50) { awaitTime (30); awaitTime (90) ;
> g0; 305
} consumesTime (30) {
h(); k();
}

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

gwaitTime (30)

s

Process P:
£Q0);
consumesTime (50) {
> g();
}
h();

Matthieu Moy (Verimag)

I

Process Q:
i0);
>awaitTime (30) ;
3O
consumesTime (30) {
k();

Process R:
>1();
awaitTime (90) ;

Modeling of Time/iTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

awaitTime (90)

Process P:
£Q0);
consumesTime (50) {
> g();
}
h();

Matthieu Moy (Verimag)

Process R:

107
>awaitTime (90) ;

Process Q:
i0);
>awaitTime (30) ;
3O
consumesTime (30) {
k();

Modeling of Time/iTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

Time Elaps
Process P: Process Q: Process R:
£0; i0); 10);
consumesTime (50) { w»awaitTime (30); >awaitTime (90) ;
> g0 3O
} consumesTime (30) {
h(); k();

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

Process P:
£Q0);
consumesTime (50) {
> g();
}
h();

Matthieu Moy (Verimag)

Process R:

10);
>awaitTime (90) ;

Process Q:
i0);
awaitTime (30);
>3 0);
consumesTime (30) {
k();

Modeling of Time/iTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

sumesTime (30)

Process P:
£Q0);
consumesTime (50) {
> g();
}
h();

Matthieu Moy (Verimag)

Process R:

10);
>awaitTime (90) ;

Process Q:
i0);
awaitTime (30);
3O
»consumesTime (30) {
k();

Modeling of Time/iTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

Process P:
£Q0);
consumesTime (50) {
> g();
}
h();

Matthieu Moy (Verimag)

Process Q: Process R:

i(); 10);
awaitTime (30); >awaitTime (90) ;
3O
consumesTime (30) {
> k();
}

Modeling of Time/iTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

Process P:
£Q0);
consumesTime (50) {
gQ);
>}
h();

Matthieu Moy (Verimag)

Time Ela

Process R:

10);
>awaitTime (90) ;

J
Process Q:
i0);
awaitTime (30) ;
3O
consumesTime (30) {
> k();
}

Modeling of Time/iTLM MEMOCODE, July 2011 <20/22 >



Implementation

Time Queue and consumesTime (T)

Process P: Process Q: Process R:
£0; i0); 10);
consumesTime (50) { awaitTime (30); >awaitTime (90) ;
gQ); 3O
} consumesTime (30) {
>h(); > k()
}

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011 <20/22 >



jTLM Duration Applications Implementation Conclusion

Outline

@ Transaction Level Modeling and jTLM
9 Time and Duration in jTLM

Q Applications

Q Implementation

6 Conclusion

Matthieu Moy (Verimag) Modeling of Time/iTLM MEMOCODE, July 2011 <2t/22 >



Conclusion

Perspectives

@ Summary
» Tasks with duration
» Exhibit more behaviors/bugs
» Better parallelization
@ Skipped from the talk (cf. paper)
» Tasks with a priori unknown duration
» jTLM’s cooperative mode
@ Perspectives

» Adapt the ideas to SystemC (ongoing, not so hard)
» Run-time Verification to explore schedules (science-fiction)
» Open-Source Release?

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <22/22 >



Conclusion

Perspectives

@ Summary
» Tasks with duration
» Exhibit more behaviors/bugs
» Better parallelization
@ Skipped from the talk (cf. paper)
» Tasks with a priori unknown duration
» jTLM’s cooperative mode
@ Perspectives

» Adapt the ideas to SystemC (ongoing, not so hard)
» Run-time Verification to explore schedules (science-fiction)
» Open-Source Release?

Thank you! ~ Questions?

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <22/22 >



	Transaction Level Modeling and jTLM
	Time and Duration in jTLM
	Applications
	Implementation
	Conclusion

