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Modern Systems-on-a-Chip
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jTLM

Transaction-Level Modeling

@ (Fast) simulation essential in the design-flow

» To write/debug software
» To validate architectural choices
» As reference for hardware verification
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Transaction-Level Modeling

@ (Fast) simulation essential in the design-flow
» To write/debug software
» To validate architectural choices
» As reference for hardware verification
@ Transaction-Level Modeling (TLM):

» High level of abstraction
» Suitable for

Industry Standard = SystemC/TLM
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SystemC/TLM vs. “TLM Abstraction Level”

SystemC TLM
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iTLM

jTLM: goals and peculiarities

@ jTLM’s goal: define “TLM” independently of SystemC
» Not cooperative (true parallelism)
» Not C++ (Java)
» No J-cycle
@ Interesting features
» Small and simple code (= 500 LOC)
» Nice experimentation platform

@ Not meant for production
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Duration

Simulation Time Vs Wall-Clock Time
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Time in SystemC and jTLM
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Duration

Time in SystemC and jTLM
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Time in SystemC and jTLM
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Duration

Time a la SystemC: awaitTime (T)

T 4@ Time
elapse

r

@ By default, time does not pass

= instantaneous tasks +— Computation

Wall-clock time

@ awaitTime (T) : 0 10 20 30 40
let other processes execute Simulation time

for T time units
£f(); // instantaneous

awaitTime (20) ;
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Duration

Task with Known Duration: consumesTime (T)

g 1 — =
@ Semantics:

» Start and end dates known consumesTime (15) {

» Actions contained in task spread in £10);

between £2();

@ Advantages: £30);

» Model closer to actual system }

» Less bugs hidden consumesTime (10) {

» Better parallelization g();
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Duration

Execution of consumesTime (T)

Slow computation

Fast computation
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Applications
Exposing Bugs

Example bug: mis-placed synchronization:

flag = true; while(!flag)
awaitTime (5) ; awaitTime (1) ;
writeIMG () ; ” awaitTime (10);
awaitTime (10); readIMG () ;

= bug never seen in simulation
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Example bug: mis-placed synchronization:

flag = true; while(!flag)
awaitTime (5) ; awaitTime (1) ;
writeIMG () ; ” awaitTime (10);
awaitTime (10); readIMG () ;

= bug never seen in simulation

consumesTime (15) { while (!flaqg)
flag = true; awaitTime (1) ;
writeIMG () ; ” awaitTime (10) ;

} readIMG() ;

= strictly more behaviors, including the buggy one

Matthieu Moy (Verimag) Modeling of Time/jTLM MEMOCODE, July 2011

<15/22 >



P1

P2

P3

P4

Applications

Parallelization

JTLM’s Semantics
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Applications

Parallelization

P1 - —
JTLM’s Semantics
P2 — —
@ Simultaneous tasks run
P3 — N in parallel
@ Non-simultaneous tasks don’t
P4 — | N @ Overlapping tasks do

@ Back to SystemC:

» Parallelizing within §-cycle = great if you have clocks
» Simulation time is the bottleneck with quantitative/fuzzy time
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Implementation

Time Queue and awaitTime (T)

Process P: Process Q: Process R:
> (); »>h(); >i();
awaitTime (50); awaitTime (30); awaitTime (90) ;
g();

awaitTime (30);
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Implementation

Time Queue and awaitTime (T)

gwaitTime (30)

—

Process P: Process Q: Process R:
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Implementation

Time Queue and consumesTime (T)

What about consumesTime (T) ?

Matthieu Moy (Verimag) Modeling of Time/{TLM MEMOCODE, July 2011 <19/22 >



Implementation

Time Queue and consumesTime (T)

Process P: Process Q: Process R:
>£0); >1i(); »1();
consumesTime (50) { awaitTime (30); awaitTime (90) ;
gQ); 3O
} consumesTime (30) {
h(); k();
}
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Time Queue and consumesTime (T)
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Conclusion

Perspectives

@ Summary
» Tasks with duration
» Exhibit more behaviors/bugs
» Better parallelization
@ Skipped from the talk (cf. paper)
» Tasks with a priori unknown duration
» jTLM’s cooperative mode
@ Perspectives

» Adapt the ideas to SystemC (ongoing, not so hard)
» Run-time Verification to explore schedules (science-fiction)
» Open-Source Release?
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Conclusion

Perspectives

@ Summary
» Tasks with duration
» Exhibit more behaviors/bugs
» Better parallelization
@ Skipped from the talk (cf. paper)
» Tasks with a priori unknown duration
» jTLM’s cooperative mode
@ Perspectives

» Adapt the ideas to SystemC (ongoing, not so hard)
» Run-time Verification to explore schedules (science-fiction)
» Open-Source Release?

Thank you! ~ Questions?
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