
Claude Helmstetter1,4 <cl@ude.fr>, Jérôme Cornet2, Bruno Galilée2, Matthieu Moy3, Pascal Vivet1

1CEA - LETI - Minatec Campus, 2STMicrolelectronics - Grenoble, 3Grenoble-INP/Verimag, 4CNRS/Verimag

context: P2012/STHORM heterogeneous SoC issue: too many context switches in FIFO model

main idea: Develop a FIFO model
 that use timestamps to set local
 dates and limit context switches

Introduction

The Smart FIFO

Using the Smart FIFO:
● As few context switches as there are
 in an untimed model
● Up to 6 times faster than a basic FIFO
● Timing perfectly preserved
 (excepting delta-cylces and scheduling)
● No need of a time quantum

Case study: P2012/STHORM TLM model
● Successful and seamless integration
● Behavior and timing preserved
● Simulation speed: + 42.3 %

Demo available on the laptop

Conclusion

Fast and Accurate TLM Simulations using
Temporal Decoupling for FIFO-based Communications

writer process
wait(20,SC_NS);
fifo.write(1);
wait(20,SC_NS);
fifo.write(2);
wait(20,SC_NS);
fifo.write(3);

reader process
wait(15,SC_NS);
x1=fifo.read();
wait(15,SC_NS);
x2=fifo.read();
wait(15,SC_NS);
x3=fifo.read();

FIFO

FIFO

reader

writer wait 20

wait 15 wait 15 wait 15

wait 20 wait 20
t=0ns t=20ns t=40ns t=60ns

t=15ns t=35ns t=55ns

wr 1

wr 2

wr 3

rd rd rd

→
1

→
2

→
3

GNoC + HOST

CPU

CPU

CPU

CPU

CPU

CPU

CPU

BU
S

M
EM

O
RY

M
EM

O
RY

DMA NoC

NoC

NoC

HW-PE HW-PE

HW-PE

HW-PE

HW-PE

PU

PUPU

SIF

Memory-based transactions
→ use temporal decoupling

with respect to IEEE 1666-2011

FIFO-based communications
→ use temporal decoupling

as presented in this work

Simulation durations

Smart FIFO
circular buffers, with:
data + timestamps

for both busy
and free cells

monitor interface
int get_size();
- low-rate accesses

writer-side interface
void write(data);
bool is_full();
sc_event not_full;
 - requires ordered dates
 - high-rate accesses

reader-side interface
data read();
bool is_empty();
sc_event not_empty;
 - requires ordered dates
 - high-rate accesses

Algorithm of the write method
1. if all cells are busy, synchronize the writer process

and wait until a cell is available (1 context switch)
2. if the first free cell freeing date is in the future, then

increase the writer process local time up to this date
3. update the cell: fill the data and set the insertion date;

advance the first free cell index
4. wake up a blocked reader process, if any.

Algorithm of the is_empty method
 returns true if and only if:
 1. either all cells are (internally) free
 2. or the insertion date of the first busy cell is

in the future.

Algorithm of the get_size method
 not so simple… see the paper.

other approaches:
● tlm_fifo (from OSCI TLM 1.0):

no timestamp ⇒ wrong behavior
if used with temporal decoupling

● sc_event_queue (SystemC):
 timestamps, but no size control
● loose timing accuracy:

some stream protocols are faster
but introduce more or less
timing errors

