NFP	Panorama	Case Studies	Requirements	WI
		T 1 ·		
		Taking		
	Non Fi	inctional Pr	operties	
in	to account while	e studying e	mbedded syste	ems.

Karine Altisen and Matthieu Moy

Verimag

June 11, 2008

NFP	Panorama	Case Studies	Requirements	WIP
		Outline		
Duchlana	Nen Ernetional	Dueneuties		

- Problem : Non-Functional Properties
- 2 Panorama of Existing Methods
- 3 Case Studies
- 4 Requirements for Non-Functional Property Analysis

5 Work In Progress

NFP

Non Functional Properties

- Physical quantities
 - ex: energy consumption, temperature, time, ...
- Functional Vs Non functional
 - simply observe the value (time, energy, ...) \rightarrow non functional
 - some functionalities depend on this value (QoS) \rightarrow functional
- We focus on simple observation.

Relationships Between Non-Functional Properties

• Time Vs Energy

- Time is needed to measure energy (integration of power over time)
- Power-aware systems need the same information for time and energy (energy saving state, DVS ...)
- Energy Vs Temperature
 - The more the chip consumes, the hotest it is, but ...
 - ... the hotest the chip is, the more it consumes.

NFP	Panorama	Case Studies	Requirements	WIP
		Outline		
		Outific		

- 1 Problem : Non-Functional Properties
- Panorama of Existing Methods
- 3 Case Studies
- 4 Requirements for Non-Functional Property Analysis

5 Work In Progress

NFP	Panorama	Case Studies	Requirements	WIF
	I	Danorama	а	
	model		method	
Detaill Includ State-h Level o Faithfo	ed description e the whole functionalit pased models of abstraction? ulness?	y Ful For Res Ma Ab Sta Er	l-simulation rmal methods not applicable sults on some traces odel-checking, stract interpretation ate explosion problem haustive solution	
State RTC Sched Faith	less models luling analysis fulness of the model?	$ \begin{bmatrix} An \\ for \\ Ex \\ (w \end{bmatrix} $	alytic solution all executions act solution porst case, best case)	

NFP	Panorama	Case Studies	Requirements	WIP
		Panorama		
		i unorumu		

• Intermediate models, mixed analytic and state-based models

- RTC+Timed automata
- Probabilistic models, e.g.
 - ★ PEPA Performance Evaluation for Process Algebra, University of Edinburgh
 - ★ Stochastic Automata Network performance evaluation for parallel system, Grenoble
- UPPAAL, Uppsala & Aalborg universities
- etc

NFP	Panorama	Case Studies	Requirements	WIP
		Outline		

- 1 Problem : Non-Functional Properties
- 2 Panorama of Existing Methods
- 3 Case Studies
- 4 Requirements for Non-Functional Property Analysis

5 Work In Progress

Sensor Networks and Energy Consumption

- Detailed simulation of the whole network with energy estimation: GLONEMO.
- Based on power-state modeling:
 - Simulates the complete behavior
 - The behavior drives a state machine giving the energy consumption.
- See Florence's talk...

Energy Consumption in SOC

A schematic power-aware system on a chip:

Partnership with Docea-Power

- Local start-up (one end-of-study project in common with them),
- Estimation of energy consumption
- Take ENERGY ↔ TEMPERATURE into account.

Docea-Power's Tool for Energy and Temperature Estimation

- Model =
 - a state-based model of power consumption mastered by the power manager
 - a temperature model based on the layout of the chip and differential equations
- Estimation of energy consumption =
 - based on "scenarios" (obtained from functional simulation)
 - for one scenario, give the evolution of temperature and energy consumption

Karine Altisen and Matthieu Moy (Verimag)

Non-functional properties

June 11, 2008 < 13

< 13 / 33 >

.....

Temperature Model

- Based on actual layout on the chip,
- Models heat transfer between pieces of the chip and heat dissipation
- Uses differential equations

• ... we can't help much!

NFP	Panorama	Case Studies	Requirements	WIP
		Eunctionality		

Functionality

- Functional simulation can be done independently, and provides scenarios for the tool,
- Can be RTL simulation or more abstract (TLM),

Power model

- Each component has "power states"
- Notion of transition not described at this level, given by:
 - some inputs for the model that are directly power directive
 - decisions taken by the power-manager
- Power-manager does not appear explicitly:
 - ▶ in the actual system, can be HW and/or SW,
 - it implicitly drives HW about power decision
 - by saying which combination of the components power states are possible
 - $\blacktriangleright \rightarrow$ hand-made product of automata with constraints

NFP	Panorama	Case Studies	Requirements	WIP
		Outline		
1	Problem : Non-Functiona	l Properties		
2	Panorama of Existing Met	chods		

3 Case Studies

4 Requirements for Non-Functional Property Analysis

5 Work In Progress

State-Based Behavior is Needed

- Real-life systems have states :
 - Power-manager, systems with energy-saving states
 - Components have distinct power consumptions depending on activity (processor, radio of sensor node, ...)
- Abstracting states
 - would lead to very pessimistic worst case
 - would mean not considering power-saving states!

Solution that Scales Up is Required

Simulation:

- GLONEMO can simulate "in real time" for 1000 nodes
- Docea simulates reasonably slower than real-time (1/15)

Model based approach: (model-checking, abstract interpretation...)

• State explosion problem

Analytic solutions: seems to scale up more easily!

Component-based Solution is Better

- Systems are usually described with components
- e.g. decomposition into functional parts (HW, SW)
- can be an answer to scale up:
 - in terms of description (code reusability)
 - in terms of reasoning (computing the solution)

NFP	Panorama	Case Studies	Requirements	WIP
		Outline		
		Outline		

- 1 Problem : Non-Functional Properties
- 2 Panorama of Existing Methods
- 3 Case Studies
- 4 Requirements for Non-Functional Property Analysis

5 Work In Progress

Work In Progress

- Work with Yanhong Liu
- A step in your direction?

Work with Yanhong Liu

Models the energy in a sensor node

- Using probabilistic models
- Attempts to model the MAC radio protocol using PEPA Performance Evaluation for Process Algebra, University of Edinburgh
- Experiments of probabilistic model-checking with PRISM (University of Oxford)

Work with Yanhong Liu

• Using UPPAAL models

- Models as timed automata:
 - processing elements
 - linked by FIFO queues (with explicit states)
 - + a power manager
- As it is, doesn't scale up
- changing data-granularity may help, but then connecting components is harder.

A step in your direction?

A Small Multimedia Example

A step in your direction?

A Small Multimedia Example

• Scenario description:

inputs (images to decode) — Proc with DVS: SW1 — bus+RAM — HW1 –pipeline– HW1 — bus+RAM — Proc: SW2 — outputs

• + Power Manager:

 for each element (SW, HW): several levels of power consumption (implies different execution times)

• Scenario description:

inputs (images to decode) — Proc with DVS: SW1 — bus+RAM — HW1 –pipeline– HW1 — bus+RAM — Proc: SW2 — outputs

• + Power Manager:

- for each element (SW, HW): several levels of power consumption (implies different execution times)
- Can MPA-RTC help? meeting our requirements:

• Scenario description:

inputs (images to decode) — Proc with DVS: SW1 — bus+RAM — HW1 –pipeline– HW1 — bus+RAM — Proc: SW2 — outputs

• + Power Manager:

- for each element (SW, HW): several levels of power consumption (implies different execution times)
- Can MPA-RTC help? meeting our requirements:
 - it scales up,
 - it seems to fit our notion of component-based model,

• Scenario description:

inputs (images to decode) — Proc with DVS: SW1 — bus+RAM — HW1 –pipeline– HW1 — bus+RAM — Proc: SW2 — outputs

• + Power Manager:

- for each element (SW, HW): several levels of power consumption (implies different execution times)
- Can MPA-RTC help? meeting our requirements:
 - it scales up,
 - It seems to fit our notion of component-based model,
 - what is the problem exactly? How to model energy?
 - state-based model?

A component-based model

An attempt with MPA-RTC, but no energy, no states

Modeling energy?

Modeling energy?

Problem (e.g.) = what are the upper and lower bound on power consumption within a given time interval Δ ?

Modeling energy?

Problem (e.g.) = what are the upper and lower bound on power consumption within a given time interval Δ ?

Problem (*e.g.*) = what about the average?

WIP

What about states?

The HW component case:

- available resource depends on state
- moving from a state to another depends on the PM: it is an input of the component

WIP

What about states?

The HW component case:

- available resource depends on state
- moving from a state to another depends on the PM: it is an input of the component

What about states?

The HW component case:

- available resource depends on state
- moving from a state to another depends on the PM: it is an input of the component

Can Event-based Workload Variability help?

This is an open question!

Karine Altisen and Matthieu Moy (Verimag)

WIP

Can Event-based Workload Variability help?

This is an open question!

Event-based workload variability =

- typed events instead of having an arrival curve for one kind of event
- the workload variability automaton
 a model for the resource demand of each typed of events

• *the event sequence automata* a model of the environment that sends the inputs

Can Event-based Workload Variability help?

This is an open question!

Karine Altisen and Matthieu Moy (Verimag)

Can Event-based Workload Variability help?

This is an open question!

Inputs are typed, depending on power states:

- one type per power state
- $\bullet \longrightarrow$ their resource demand is computed depending on the state

Inputs are typed, depending on power states.

Inputs are typed, depending on power states.

Need for a model of the resource demand of the inputs: *(the workload variability automaton)*

- ullet \longrightarrow the states of the HW component
- + transition from the power manager: express the resource demand of each input, depending on their type (ie their state consumption)

WIP

Can Event-based Workload Variability help?

Inputs are typed, depending on power states. Need for a model of the arrivals.

WIP

Can Event-based Workload Variability help?

Inputs are typed, depending on power states. Need for a model of the arrivals.

Need for a model of the environment:

(the event sequence automata)

• how the inputs are sent? (express by a regexp)