Efficient Encoding of SystemC/TLM in Promela

Kevin Marquet, Bertrand Jeannet, and Matthieu Moy

Abstract—To deal with the ever growing complexity of | SC_MODULE(nytop) {
Systems-on-Chip, designers use models early in the desig Zg—g‘l’_g’% rr;op) :
flow. SystemC is a commonly used tool to write such models —))
In order to verify these models, one thriving approach is SC_THREAD(nyFet P); - SC_THREA(myFet Q 5

to encode its semantics into a formal language, and then t void myFctP() {.... wait(e); ...}

verify it with verification tools. Various encodings of SystemC void myFet Q) {.... e.notify(); ...}
into formal languages have already been proposed, with dif-|}

ferent performance implications. In this paper, we investigate

a new, automatic, asynchronous means to formalize models. Fig. 1. A basic SystemC module

Our encoding supports the subset of the concurrency and

communication constructs offered by SystemC used for high-

level modeling. We increase the confidence in the fact that Thig paper focuses on the issue rabdel extractionin

encoded programs have the same semantics as the original on -
by model-checking a set of properties. We give experimentalethe context of the verification of SoC modeled as SystemC

results on our formalization and compare with previous works. COncurrent programs. Our contributions are as follows:
1) We presennhew encoding principlesin sectionlV for

the extraction of formal representations from SystemC
programs, and in particular for modeling the semantics
I. INTRODUCTION of SystemC scheduler. We argue that this encoding is

As the complexity of embedded systems grows, the need simple and elegant. Its main goal is however to favor
for new methods has appeared for the co-design of hard_the efﬂmenpy of ver|f|cat|0|_"| tools. This extr_a_ctpn is
ware and software. Indeed, low-level hardware description perforlmed in a fullyautomatic way by our verification
languages such as VHDL and Verilog simulate slowly, can cain: _ _ _
hardly be used to design complex systems and therefore make/" Order tovalidate their correctness we define prop-
early software development difficult. Consequently, highe erties that must hold for an encoding to be.vallc_i. Thege
level modeling tools have appeared, allowing hardware and properties and how they are tested are detailed in section
software descriptions. v

Transaction-Level Modeling/] (TLM) is an approach in
which the architecture and the behavior of a System-on-Chip
(SoC) are described in an executable model, but the micro-
architecture details and precise timing behavior are abtstd
away. SystemCZ0] has become thele factostandard for
TLM modeling. It contains a simulation kernel that can ex-
ecute concurrent processes communicating through chennel
and shared variables, using C++ libraries. In this paper, we
are interested in TLM programs, written in SystemC. W
focus on the subset of SystemC needed for TLM modeling
leaving apart the constructs originally introduced in SysC
to write lower-level programs (like RTL).

SystemC descriptions are C++ concurrent programs that
can be tested and/or verified in order to detect designVVe give a very partial overview of SystemC, focusing on
flaws. Verifying a concurrent program can be done with'€ points that are relevant for this paper.
various approaches. One thriving approach is to describe it A SystemC program defines amchitecture i.e. a set of
semantics formally, and then to verify this semantics usifMPonents and connections between them, anehavior
verification tools. The first step is calledodel extractiorand [-8- components have a behavior defined by one or several
leads to the translation of the program into a formal repr@focesses and communicate with each other through ports.
sentation, and the second step is the verification perform@éce the architecture is defined (by talboration phase
on the formal representation. Different representatioms cPerformed at the beginning of execution), teenulation
be chosen, that model differently time and concurrency, aRfasestarts: processes execute according to the SystemC
that are connected to different verification tools. scheduling policy. As an example, figuteshows a SystemC

module containing two processes, one waiting for an event,

Manuscript received December 1, 2010; revised January 18,.20 the other notifying it.

Kevin Marquet is with VERIMAG, Universé Joseph Fourier, Grenoble, We do not consider here the notion &icycles P, in-
France. Kevin.Marquet@imag.fr Y ’

Bertrand Jeannet is with the INRIA Rhes-Alpes, Grenoble, France.Spired from traditional HDL languages, since it is not usefu
Bertrand.Jeannet@inrialpes.fr

Matthieu Moy is with VERIMAG, Grenoble INP, Grenoble, Franc 1The implementation is open-source and available from
Matthieu.Moy@imag.fr http://gitorious.org/pinavin

3) At last, sectiorVVl presentexperimental resultson Sys-
temC examples translated Rromelg the asynchronous
formalism used as input to the SPIN model-checker. Our
results show major improvements over past similar works,
thanks to the fact that our encoding does not introduce
complex behaviors limiting the applicability of formal
verification tools. We show in particular a tremendout
reduction of the number of states that SPIN needs to
explore.

efore presenting these, we present SystemC in sedtion
nd compare our approach to related works in sedtion

II. SYSTEMC

http://gitorious.org/pinavm

for TLM models (this implies that we do not support Sys- 71 X T2 X T3 X Sch T (COT()Ts
temC constructs likevait(SC_ZERO_TIME), which makes Synchronous automata Asynchronous automata
a process wait until the next evaluation phase, or compsnent + scheduler Dedicated product
sc_signal andsc_fifo). We focus on the following constructs (1114 [
of SystemC, which are the basis for TLM modeling: (SystemC)
wait(d: int) Stops executing the current process, yields back Concurrent
the control to the scheduler and makes the current program
process to wait for the given duration.
wait(e: event) Stops executing the current process, yields T % To x T
back the control to the scheduler and makes the current 71 x Tz x T3 x Sch A ! X 2o duct
process to wait for the event to occur. SystemC alsoAsynchronous automata Sygﬁa:gg ?,lfrigé?e ue
allows the constructsvait(el & e2) andwait(el | e2) 1 [4] This paper
to wait for conjunctions and disjunctions of events.
event.notify() Makes processes waiting for the specifieglig. 2. Different approaches for translating SystemC prowrinto other
event eligible (without stopping the current process). formalisms
event.notify(delay: int) Triggers a notification after the
given delay. In SystemC, only the earliest timed no-
tification is kept, which simplifies the semantics of thi€xplicit additional process, or (2b) by incorporating it in
primitive. the semantics of the synchronization instructions (tyhica
SystemC scheduling follows ron-preemptivescheduling the ones described above). Choosing arbitrarily a specific,
policy. When several processes are eligible at the same tirdleterministic scheduler allows only to explore a subset of
the scheduler runs them in an unspecified order. the behaviors. We do not want such restriction and therefore
Concerning communications between process, we u@e not consider solution.
shared variables to model several threads belonging to theéSolution2ais interesting as it does not restrict the set of
same module communicating by accesses to the fields of gwssible behaviors. This is the solution consideredlir.[
module. Concerning TLM ports, our implementation doeldowever, encoding the scheduler as a special process inter-
not (yet) manage them explicitly; it requires the functiomcting with the SystemC processes complexifies the behavior
calls to be done directly from modules to modules insteadf the global system. Typically, such an encoding induces
of relying on port/socket bindings”[], which is a (useful) additional communications between processes, compared to
syntaxical sugar. We therefore focus on the notion of methtite original SystemC semantics. For instance, the encoding
calls. of the event.notify() primitive is likely to induce a context-
Restricting ourselves to a strict subset of SystemC is noswitch (as it changes the state of the scheduler), which
limitation as far as we are focused on TLM models. Of coursives not occur in the original SystemC semantics. The bad
it implies that we cannot handle more general Systenmg®nsequence is that such additional communications may
programs, but it also makes our approach more generalprevent verification tools to perform powerful optimizat
the sense that it could easily be adapted to other discreigpically, partial-order reduction relies on a notion ofidie-
event cooperative simulator (like the cooperative versibn pendent transitions”, and cannot be applied if the notion of

JTLM [2)). “transition” of the model does not correspond to the notion
of atomic sections in SystemC.
I1l. OVERVIEW OF THE PROBLEM ANDRELATED WORKS Consequently, we have chosen the approach of point

General overview:The challenge raised by formal veri-20: we do not encode the scheduler as an explicit pro-
fication of SystemC models is that SystemC has not be®sS composed imparallel with the SystemC processes.
designed for this purpose. An option could be to consigdistead, we jntegrate the scheduler in the semantics of the
them as regular C++ programs, but few verification tooynchronization primitives that are usedquentiallyinside
are available for them, especially when the goal is to cheRch SystemC process, without introducing any “artificial”
functional properties Moreover, a general verifier would context-switches.
have to analyze the SystemC class library and to rediscoveRelated work: The related work based on encoding of
by itself its high-level semantics. For these reasons, mdsystemC programs in other formalisms we are aware of (see
related work proceeds differently: the user's coddrisis- Fig. 2) are all based on solutioda, but they can be further
lated and abstractedhto the formal model accepted by theclassified according to the considered formal model, which
targeted verification tool, whereas the high-level sensantimay be synchronous or asynchronous.
of SystemC/TLM class libraries isand-codedn the formal LusSy [L7] is a prototype of a complete verification chain.
model. The verification tool is then applied to the resultin encodes the processasd the scheduler in synchronous
model. automata. The intermediate formalism is callédlOM. The

Representation of the SystemC schedulodeling the main drawback of this formalism is that it breaks down
semantics of the SystemC library reduces mainly to modelimglevant information into lower-level ones, making thektas
the SystemC scheduler. Three options can be imaginedhtarder for verification tools, that are unable to handle real
represent the scheduler in a formal representation: (1)emodase studies. A similar work/] describes how to generate
the deterministic behavioof the reference implementationUPPAAL models from SystemC programs. Several other
described in the SystemC standar@’][or (2) model a translation-based approaches have been propasid i,
more general non-deterministic scheduleither (2a) as an also introducing a lot of complexity in the encoding.

Other works considers asynchronous formalisms. We aection IV-C how to extend our encoding to handle such
tually show in sectionVV-C that SystemC's time semanticsconstructs.
is encoded naturally and efficiently with deadline varigble
(similar to “clocks”) evolving asynchronously, unlike the
semantics of timed automata used in UPPAAL, in whicA. Translating User Processes from C++ with PinaVM

clocks evolves synchronously. Translating SystemC automatically requires the use of

In [],a$ystem§ Process IS encoded witMaMac au- a complete SystemC front-end. Borrowing some ideas
tomaton which distinguishesiicro-statesand macro-states from Pinapa [(], we set up a SystemC front-end called

Micro-statesrepresent points where the process can nOtyiellginaVM [15 able to take as input a SystemC program

°°””"’?”'y 10 mgcro—stateisthat are yielding points (typically nd to produce an intermediate representation. This front-
following a wai t ()). MicMac automata can be compos_eci‘nd is based on the compiler infrastructure LLVNZ]

n pe_lrallel using d(_ed|cated product exploiting the_ NOtIoR g the intermediate representation is mainly composed
of'milcro-stgt.es.'Tms approach cannot be used. directly 12 hasic blocks containing SSAS(atic Single Assignmént
existing verification tools that are not aware of micro®$at jctions, PinaVM executes the elaboration phase like

I[\/I']Mproposes first t(;) ﬁncode a deStE/Im(I\:/I programs I na and uses dust-In-Timecompiler to retrieve Sys-
icMac automataand thento encode MicMac automata.temc information on events or ports to enrich intermediate

into Promela. However, the last translation loses the ﬁpec'representation obtained from LLVM.

benefits of M|cMa(_: formalism. Moreover, We. show that. From the intermediate representation produced by our
some SystemC notions are encoded naturally in Promelaé{xgm_end a back-end produces automatically a Promela pro

particular, a_ltomlc sect|on§ of SystemC c_orres_pond _dyec ram. Each SSA instruction is translated into an equivalent
to theat om ¢ statement in Promela), while using MicMac

as an intermediate formalism prevents such direct trainexlatIn Promela |n:s_truct|on. AIt_hough Promela prpy@es some

. o . f the structuring mechanisms of a call definition, these
and introduces unnecessary complexity in Fhe _encodlng._ Rchanisms provide no benefit for the verification engine
sum up, the approach implies the re—enc_odmg Inan 9_pr|.| mpared to a static inlining, therefore, we chose to inline
and asynchronous way of some mechanisms that Vel’lflcatla)l

Pectly all function calls.
tools, including SPIN, can tackle very efficientiyhen the y. .
X . ; In this translation, each SystemC thread generates a
corresponding native mechanisms are used

) : .Promela process. We do not consider in this paper dynamic

Our approach: asynchronous formalism + shared vari- . :

ables: This paper proposes a solution based on an asycﬁ?at'on of processes, that are seldom encountered in SoC
models.

chronous model (namely Promela) to encode TLM concur-

rent programs, that consists in modeling the asynchronous

communications and the semantics of the scheduler by ins%t

ing synchronization primitives manipulating shared Valea

into the code of the processes. The expected gain of this aptn the encoding of SystemC synchronization primitives, we

proach is to minimize the interactions between processes,rsly on three features related to concurrency that are geavi

as to let verification tools freely apply reduction techrigu by Promela:

such as symmetry or partial order reductions. 1) The ability to use shared variables.

Other Validation ApproachesAlternatives to formal ver- 2) Theblocked(cond) primitive, which stops the execution
ification are based on code execution, for instance stan- of the current process until conditiatond on shared
dard testing, run-time verificationc] or explicit model- variables becomes true, and gives the control to an-
checking p]. In [5] the original C++ code is instrumented other process (the actual syntax in Promela is simply
so as to enable an on-the-fly state-space exploration of the [cond).
model, based on the techniques of the CADP tpolbox 3) The notion of atomic section, that can be interrupted
to execute native code. These methods showed to be very with the blocked primitive.
efficient to explore the possible schedulings of a syster, ln the sequel we denote By* the eventt, with 1 < k < N,
are fundamentally limited to explicit-state exploratiamd and the set ofV, processes is denoteel.
cannot be extended to perform symbolic model-checking or Events: SystemC events aron persistentthe instruction
abstract interpretation. A hybrid approach is presentdd]in wait(£*) is blocking, and takes into account only notifi-
which executes C++ code natively f@C_METHODs, but cations taking place after its execution: if the evéit is
relies on translation foBC_THREADs. This work is probably notified before the execution of wait(E*) instruction, it
the closest to the one presented in this paper, as the egcodifll be ignored by this instruction. An important conseqoen
does not rely on a separate process for the scheduler. s that a process can be waiting for at most one event (we

currently do not consider the construshi t (el & e2)
IV. TRANSLATION FROM C++ AND ENCODING OF of SystemC).
SYSTEMC SCHEDULER For encoding events, we thus associate to each process

We first remind the general principles of our tool chai@ bounded integeb < W,, < N, such that:
for SystemC, then we describe precisely the encoding ofe W, = k when procesg waits for E*;
SystemC synchronization primitives, and last we discusse W, = 0 when procesgp is not waiting for an event and
some alternatives. Among the primitives mentioned in sec- is eligible;
tion 11, we will not consider delayed notifications, or waitingand we define thevait and notify instructions in Tabl. We
for conjunctions or disjunctions of events, but discuss imeed for this encodingv, log,(1 + N.) bits.

Encoding synchronization primitives

prwait(EF): p:: E* notify(): pwait(d):
1 W,:= 3VieP|W;,==K 1T,:=T,+d
2 blocked{V, == 0) 4 W;:=0 2 blocked(}, == g (1))
W;==0
TABLE |
ENCODING EVENTS ALONE powait(BF): piE*. notn‘y()
3 W; =K SVieP|W;==k
4 blocked{V; == 0) 6 W; =0
piwait(d): 7 I;=Tp
17T,:=T,+d
2 blocked{l, == min(T3})) TABLE Ill
epr ENCODING EVENTS AND TIME
TABLE I int e[NBTHREADS]
Int e)
ENCODING TIME ALONE int T[NBTHREADS] |
bool end[NBTHREADS] ;
inline init_coding(i) {
Time: SystemC time management internally assumes a 'do‘:f) i == NBTHREADS -> br eak:
discrete time semantics, although in the API timed funation ooelse > o _
use floating-point durations. We thus assume that we have a el g T = 0 endli] = False:
specific constructvait(d:int) to wait for thediscreteduration }
dto elapse' inline notify(pid, nevent, i) {
For encoding time, we attach an interaadline variable i =0 .
. . do :: i < NBTHREADS && e[i] == nevent ->
T, : int to each procesg. It represents the next deadline for e[i1=0; T[i]=T[pid]; i+
p whenp is waiting, and the current date wheiis running. It s NETHREADS &% e[i] != nevent ->
is not necessary to examine the state of the proeésiseach .. i == NBTHREADS - > break; od;
value of7},, we only need to respect the schedulings allowed) P=0
by the durations waited for by the processes. Consequently,
i i i i . inline wait(pid, tine) {
we defllje_the encodmgra_l t(d) in Tab.lIl: Tpidl = Tipie] +tlm:
T}, is incremented witht; ((end[O]) || (e[O] t=0) || (T[pid] <= T[O]) &&
iqi T i i i ini- (end[1]) || (e[1] t=0) || (T[pid] <= T[1]) &&
« p becomes eligible if its deadline variable is the mini (end(2]) || (el2] 1= 0) || (Tipid] <= T(2])):

mum of all deadline variables.
Alternatively, we could maintain a global

}

C|0cwg inline wait_e(pid, nevent) {
to ml]IDI(T) and replace the blocking condition by g{g:g% f_”g}’em?

bIocked(T == T,). The advantages and drawbacks of this
option w.r.t. the efficiency of the verification process ischa
to assess priori.

Interaction between time and eventE&vents and time

Fig. 3. Encoding in Promel&Compared to Tabll, we
add theend array to handle the particular case where
atask is completed in theai t (d: i nt) instruction.

interact together, and things become subtle when some pro-
cesses are waiting for events and others for a time duratiéh. Discussion and Improvements

We propose the encoding given on table based on the oyr encoding implements in some way an asynchronous
following principles: time semantics, as opposed as the synchronous time seman-
(1) The value of a deadline variablg, is meaningfulonly tics of timed automata used in tools like UPPAALT],
if W =0 (procesg is not waiting for an event). Whenin which clocks evolves synchronously. Our approach thus
a process is waiting for an everit;, is not updated. does not enable the use of these tools. Notice however
The main invariant becomes thuthe deadline variable that we hardcode in our approach the fact that we only
of a running or eligible process is the minimum of th@eed to know the next deadlines, and not all the possible
deadline variables of processes not waiting for an eveniitermediate values that a discrete synchronous clockadvoul
Concerning thevait(d) instruction, the blocked processtake between the current time and the next deadline. As a
becomes eligible as soon as its deadline variable is thesult, multiplying all the durations by a constant factoed
minimum of deadline variablesf processes not waiting not impact the size of the reachable state-space with our
for an eventaccording to principle 1). encoding.
When procesg notifies an event”, not only should the Finite-state model-checkers like SPIK] [do not support
variablesIV; be reset (for processeswaiting for E*), unbounded deadline variables. However, it is easy to modify
but also should their deadline variable be updated to thér encoding by exploiting the fact that two global states
current date (which is equal to the deadline varidble agreeing on the differences — 7; between deadline vari-
of the running procesg). This is because of principle ables are equivalent w.r.t. the synchronization primitieé
(1): these deadline variables becomes meaningful agamp. |11 . In the resultingelative timeencoding, the invariant:
and the invariant above should be maintained. This ‘ighe minimum of the deadline variables of processes not
important to make a sequenaait(£*); wait(d) behave waiting for an event is zero” is ensured by shifting accord-
correctly in a process. ingly those deadline variables imait(d) instructions.

Fig. 3 depicts the Promela code corresponding to the Implementing delayed notification on a single event could
pseudo-code of Tabll . be done with the principles we followed in this section.

(2)

(3)

This would require to add another deadline variable in eaelperimentally the efficiency of our encoding w.r.t. model-
process. Implementing waiting for conjunction or disjuost checking with the encoding proposed v’ applied to the
of events would require the following modifications: same example.
» The bounded integer variablés < W, < N, should
be replaced byV. Boolean variabledV, , with 1 < A A SystemC example

; k
k< Ne deno_tlng the evenk™, because a process Our test model is the one used ifiZ] and detailed in
can know wait for a set of events.

We should also add a Boolean variable per roce%s]' It consists of a chain of modules. The first module
* per p riggers an interrupt in the next one. This interrupt nogife

to distinguish whether the process is waiting for a . : . .
:] o . event, allowing the module to trigger an interrupt in thetnex
conjunction or a disjunction of events.

To sum up, our approach can easily model such constru%?dme' and so on. The last module contains an assertion
! . - . ich is either alw fal r alw r no- .
at the cost of additional finite-state variables. ch is either always false (bug) or always true (no-bug)

The latter forces SPIN to compute the whole state space
when checking for invalid assertions. While this program
V. VALIDATING THE ENCODING PRINCIPLES may seem artificial, it exhibits the characteristics found
The encoding of SystemC primitives defined above md§ more complex real-world models and leading to state
seem intuitively correct, but experience shows that caeoiir €xplosion: many processes, synchronized by SystemC events
systems are often faulty ! which can thus be lost depending on the execution order
The ideal solution would be to prove that our encodingf the various statements. Such study allows to experiment
is correct for any program using it. Such a quantificatioBn how the state space that needs to be explored grows
on programs requires the use a proof-assistant, which iglepending on parameters. As this test model is untimed, we
very demanding task. This would require to give a formdgest here only the efficiency of the encoding of events.
semantics to SystemC (which implies C++) and to Promela,
and to prove that the two programs are equivalent. B. Results

The approach we have chosen is to construct a set ofrhe results presented in Figt focuses on the main
properties and to verify them on instances of the transtatigyarameter which is the number of modules. It shows the
in order to get confidence in the correctness of the encoding,mber of states computed by SPIN during the model-
just like certifying compilers 18] verify the result of each checking of the example presented above.
compilation. Those verifications were actually very useful Those results show a reduction by a factor of about
allowing us to detect bugs in several preliminary versiohs qq compared to previous results presented a].[The
our encoding. comparison between the two approaches, in the case where

We considered three invariants (se€]). (i) the invariant ihere is no bug is shown in figure We can see that, with our
stated in sectioriV-B; (i) “If process i notifies event* encoding, SPIN is able to model check up to 21 processes,
for which procesg is waiting, thenT; > T;"; (iii) “When a compared to 15 in the other approach.
procesg waiting for an event is made eligible by a notifying
process (line (7) of Figll), the deadlineg/}, does not change ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
until its election as the running process.” These can béyeasi SPIN O7] e
translated to a relative time setting discussed in sedtien. ceros |- 1

Two techniques were used to verify them with SPIN:
direct assertions in the code, or a “monitoring” process for
properties not related to a specific line number. This p®cesg e
only contains assertions, which can be detected as vioiiated =
the automata product performed by SPIN. As the examples
we considered are deadlock-free, we also verified that the 2z
encoding does not introduce deadlocks (for instance, by
scheduling processes in the wrong order). ;

The examples on which we checked these properties are 2 . S i 1 16 18 w0 2
the following. First, we experimented on an adaptation of N oreomponents
the reader/writer problem in which two _/vrlters and ONEy 4 Experimental results of the two approaches
reader access a FIFO. Second, we considered a model of
a communication between a Memory, a DMA, a bus and a
CPU. Third, we considered the example used in a previous
translation from SystemC to SPIN’J], described in the
appendices of1[4].

50106 | Out of memory 1

3e+06 -

1e+06

VII. CONCLUSION

We investigated the formalization of models of SoC in
the form of asynchronous automata. We proposed an en-
coding of synchronization primitives related to events and
time using shared variables and sequential instrumentatio

The aim of the previous section was to check that owf processes. This choice contrasts with other approaches
encoding actually reflects SystemC semantics. However, aarwhich parallel instrumentation is used, under the form
motivation for the encoding we propose is to enable bettef an additional process modeling the SystemC scheduler
performances of model-checkers, compared to other encadded to the system. We ensured that the encoding principles
ing approaches described in sectibh We now compare are correct by verifying a number of invariants. The given

V1. EXPERIMENTS AND EFFICIENCY OF OUR ENCODING

principles are general and are applicable to different badk4] Kevin Marquet, Bertrand Jeannet, and Matthieu Moy. difit

end languages.

We experimented on the SPIN model-checker, showing oy,
a typical example that our encoding leads SPIN to explore
ten times less states during model-checking of the encoded
model, compared to an encoding based on parallel instrumen-
tation. This confirms the conjecture we express in sedtion [16]
In addition, the translation has been fully automated: oat t
reads SystemC code directly, and generates Promela cpge
without human intervention. Our results are thus due to our
encoding and not to some specific optimizations. The tool

can be downloaded freely fromitp://gitorious.org/pinavm

Besides experimenting with a wider set of cases studies,
we see at least two point to investigate in the future. FirEf!
we have yet to compare our time management to other
approaches. We intend to compare this solution to appreackss)

based on timed automata and relying on the UPPAAItdol
for model-checking to validate our discussion of sectié@©

on the asynchronous encoding of time in SystemC. A second
perspective to evaluate the relevance and the efficiency [¢#

static analysis tools such aso@CURINTERPROC [9] for
checking safety properties of timed SystemC models.

REFERENCES

[1] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Msieu, and
M. Sighireanu. CADP a protocol validation and verificati@olbox.
In Computer Aided Verificatigrpages 437-440. Springer, 1996.

[2] Giovanni Funchal and Matthieu Moy. jTLM: an experimeidat
framework for the simulation of transaction-level models odteyns-
on-chip. InDATE, 2011. (to appear).

[3] Hubert Garavel, Claude Helmstetter, Olivier Ponsinid aiendelin

Serwe. \Verification of an Industrial SystemC/TLM Model using
LOTOS and CADP. In7th ACM-IEEE International Conference
on Formal Methods and Models for Codesign MEMOCODE'2009

Cambridge, MA United States, 2009.

[4] Frank Ghenassia.Transaction-Level Modeling with SystemC: TLM

Concepts and Applications for Embedded Systef@pringer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[5] Claude Helmstetter. TLM.open: a SystemC/TLM Front-end tle
CADP Verification Toolbox. Extended abstract for SBDCES ketiop
(http://unit.aist.go.jp/cvs/workshop/SBDCES.html) Wdikanced by
the Multival project.

[6] Claude Helmstetter, Florence Maraninchi, and LaureniflsteContoz.
Full simulation coverage for SystemC transaction-level nedsf
systems-on-a-chip.Formal Methods in System DesigB5(Number
2 / October, 2009):pages 152-189, 06 2009.

[7] Paula Herber, Joachim Fellmuth, and Sabine Glesner. Mdukck-

ing SystemC designs using timed automata. CODES/ISSS '08:

Proceedings of the 6th IEEE/ACM/IFIP international corfece on

Hardware/Software codesign and system synthgmges 131-136,

New York, NY, USA, 2008.
[8

Prentice-Hall, Englewood Cliffs, NJ, 1991.

[9] B. Jeannet. Relational interprocedural verification afncurrent

programs. InSoftware Engineering and Formal Methods, SEFM’'09

IEEE, November 2009. to appear.
[10] D. Karlsson, P. Eles, and Z. Peng. Formal verification ydtemc

designs using a petri-net based representatiorPréceedings of the

conference on Design, automation and test in Europe: Pdiogs
page 1233. European Design and Automation Association,.2006
[11] K. G. Larsen, P. Pettersson, and W. Yi.PRAAL in a Nutshell. Int.

Journal on Software Tools for Technology Transfefl-2):134-152,

October 1997.
[12] Chris Lattner and Vikram Adve. LLVM: A compilation frameuk for

lifelong program analysis & transformation. @GO '04: Proceedings

of the international symposium on Code generation and opdtion,
page 75, Washington, DC, USA, 2004. IEEE Computer Society.
[13] F. Maraninchi, M. Moy, J. Cornet, L. Maillet-Contoz, Elelmstetter,

and C. Traulsen. SystemC/TLM semantics for heterogeneotsnsys
on-chip validation. INEWCAS-TAISA 2008: Proceedings of the Joint

6th International IEEE Northeast Workshop on Circuits andt8ms
and TAISA Conferenc@ages 281-284, 2008.

Gerard J. Holzmann.Design and validation of computer protocols

encoding of SystemC/TLM in Promela—full version. Technicap@rt
TR-2010-7, Verimag Research Report, 2010.

Kevin Marquet and Matthieu Moy. PinaVM: a SystemC framied
based on an executable intermediate representatiomntémational
Conference on Embedded Software International ConferencEm-
bedded Softwargpage 79, Scottsdale, USA, 10 2010. SD B.4.4, 1.6.4,
D.2.4 OpenTLM (projet Minalogic).

Matthieu Moy, Florence Maraninchi, and Laurent Ma#{&ontoz.
Pinapa: An extraction tool for SystemC descriptions of systen-
a-chip. INEMSOFT September 2005.

Matthieu Moy, Florence Maraninchi, and Laurent Ma#@ontoz.
LusSy: an open tool for the analysis of systems-on-a-chiphat t
transaction level. Design Automation for Embedded Syste2@06.
special issue on SystemC-based systems.

G.C. Necula and P. Lee. The design and implementation eftéying
compiler. ACM SIGPLAN Notices33(5):333-344, 1998.

B. Niemann, C. Haubelt, M. Oyanguren, and J. Teich. Fozimg
TLM with communicating state machine#dvances in Design and
Specification Languages for Embedded Systeages 225-242, 2007.
Open SystemC InitiativeIEEE 1666 Standard: SystemC Language
Reference ManuaR005. http://www.systemc.org/

Open SystemC |Initiative (OSCI). OSCI TLM-2.0 Language
Reference Manual July 2009. Version JA32, available from
http://www.systemc.org/downloads/standards

Claus Traulsen,&lome Cornet, Matthieu Moy, and Florence Maran-
inchi. A SystemC/TLM semantics in Promela and its possible
applications. In14th Workshop on Model Checking Software SPIN
July 2007.

http://gitorious.org/pinavm
http://www.systemc.org/
http://www.systemc.org/downloads/standards

	Introduction
	SystemC
	Overview of the problem and Related Works
	Translation from C++ and encoding of SystemC scheduler
	Translating User Processes from C++ with PinaVM
	Encoding synchronization primitives
	Discussion and Improvements

	Validating the encoding principles
	Experiments and efficiency of our encoding
	A SystemC example
	Results

	Conclusion
	References

