
Lab 2
Interpreters and Types

Objective

• Understand visitors as a way to traverse a tree.
• Implement a typer and an interpreter as visitors.
• This is due on TOMUSS (NO EMAIL PLEASE): deadline and info on the course’s webpage.

EXERCISE #1 Ï Lab preparation
Make sure you have read and understood REGLES-TPs.md on the course homepage.

In the lab’s git repository (mif08-2025, if you don’t have it already, see the beginning of lab1).
git commit -a #push is not allowed
git pull
will provide you all the necessary files for this lab in TP02/ and MiniC/.

ANTLR4 and pytest should be installed and working like in previous lab, if not 1:
python3 -m pip install --upgrade pytest pytest-cov pytest-xdist coverage iniconfig

2.1 Typing Annotations in Python

Python is originally a dynamically typed language, i.e. types are associated with values at runtime, but no check
is done statically. Recent versions of Python, however, allow adding static typing annotations in the code. You
don’t need to add these annotations, but having them allows static typecheckers like Mypy or Pyright to find
errors in the code before running it. In this course, we will use Pyright. You don’t need to understand all the
details of typing annotations, but you need to get familiar with them to understand the code provided to you.

If you work on your own machine, if needed, install pyright. You will also soon need to install RiscV tools,
and we provide a pre-compiled archive containing it and Pyright (you may also use a Docker image, or a virtual
machine), so the simplest is that you install all this now. Instructions on how to install all this on your machine
is available in INSTALL.md on the course’s webpage.

On the Nautibus machines, Pyright and the RiscV toolchain are installed, but you still have to add the
following line to your ~/.bashrc (create it if it doesn’t exist):
source /home/tpetu/Enseignants/matthieu.moy/mif08/setup.sh

EXERCISE #2 Ï Basic type checking
Consider the following code (available as TP02/python-typing/typecheck.py in your repository):

Typing annotations for variables:
name: type
int_variable: int
float_variable: float
int_variable = 4.2 # Static typing error, but no runtime error
float_variable = 42.0 # OK
float_variable = int_variable # OK

Typing annotations for functions (-> means "returns")
def int_to_string(i: int) -> str:
return str(i)

1The coverage and iniconfig packages are not always needed but may solve compatibility issues with some versions of pytest-cov,
yielding pytest-cov: Failed to setup subprocess coverage messages in some situations. The --upgrade option ensures we
install the latest version even if an old version is already installed. Without it, the version compatibility issue would remain.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/11

https://forge.univ-lyon1.fr/matthieu.moy/mif08-2025/-/blob/main/REGLES-TPs.md

2.1. TYPING ANNOTATIONS IN PYTHON LAB 2. INTERPRETERS AND TYPES

print(int_to_string('Hello')) # Static typing error, but no runtime error
print(int_to_string(42) / 5) # Both static and runtime error

Run the code in the Python interpreter:
python3 typecheck.py
Check for static typing errors using pyright:
pyright typecheck.py
Note how static typechecking finds more error in your code, and possibly saves you a lot of debbugging time.
Try modifying the code to get rid of typing errors.

EXERCISE #3 Ï Type unions
Play with (execute, typecheck, read the comments) the following code (available as TP02/python-typing/type_unions.py
in your repository):

from typing import List

int | float means ``either an int or a float''.
NUMBER = int | float # or Union[int, float] with Union imported from typing

def add_numbers(a: NUMBER, b: NUMBER) -> NUMBER:
return a + b

Both int and floats can be passed to the function
print(add_numbers(1, 4.3))

def divide_numbers(a: NUMBER, b: NUMBER) -> float:
return a / b

print(divide_numbers(1, 2))

Declare the type of a list whose elements are numbers.
LIST_OF_NUMBERS = List[NUMBER]

def increment(a: LIST_OF_NUMBERS) -> LIST_OF_NUMBERS:
return [x + 1 for x in a]

print(increment([1, 2, 3]))

Skip the end if you are late.

The type DEEP_LIST_OF_NUMBERS is a special case since it references itself.
The identifier DEEP_LIST_OF_NUMBERS cannot be used before the end of its
initialization, but the circular dependency can be broken using the string
'DEEP_LIST_OF_NUMBERS' instead.
DEEP_LIST_OF_NUMBERS = NUMBER | List['DEEP_LIST_OF_NUMBERS']

def deep_increment(d: DEEP_LIST_OF_NUMBERS) -> DEEP_LIST_OF_NUMBERS:
if isinstance(d, list):

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/11

2.2. DEMO: IMPLICIT TREE WALKING USING VISITORS LAB 2. INTERPRETERS AND TYPES

Note the unusual typing rule applied by Pyright here: because we are
in the 'isinstance(d, list)' branch, it knows that d is a list,
and accepts to iterate over it.
return [deep_increment(e) for e in d]

else:
... and here, in the 'else' branch Pyright knows that d is
not a list,
and can deduce that it is a NUMBER.
return d + 1

print(deep_increment([1, [2, 3]]))

The syntaxint | float (or equivalentlyUnion[int, float]) means “either anintor afloat”; List[NUMBER]
means “a list whose elements are numbers”.

2.2 Demo: Implicit tree walking using Visitors

2.2.1 Interpret (evaluate) arithmetic expressions with visitors

In the previous lab, we used an “attribute grammar” to evaluate arithmetic expressions during parsing. Today,
we are going to let ANTLR build the syntax tree entirely, and then traverse this tree using the Visitor design
pattern2. A visitor is a way to separate algorithms from the data structure they apply to.

For every possible type of node in your AST, a visitor will implement a method that will apply to nodes of
this type.

EXERCISE #4 Ï Demo: arithmetic expression interpreter (TP02/arith-visitor/)
Observe and play with the Arit.g4 grammar and its PYTHON Visitor on myexample :
$ make && make ex
Note that unlike the “attribute grammar” version that we used previously, the .g4 file does not contain Python
code at all.

Have a look at the AritVisitor.py, which is automatically generated by ANTLR4: it provides an abstract
visitor whose methods do nothing except a recursive call on children. Have a look at the MyAritVisitor.py
file, observe how we override the methods to implement the interpreter, and try using print instructions to
observe how the visitor actually works.

Also note the #blabla pragmas after each rules in the g4 file. They are here to provide ANTLR4 a name
for each alternative in grammar rules. These names are used in the visitor classes, as method names that get
called when the associated rule is found (eg. #foowill get visitFoo(ctx) to be called).

We depict the relationship between visitors’ classes in Figure 2.1.

2https://en.wikipedia.org/wiki/Visitor_pattern

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 3/11

https://en.wikipedia.org/wiki/Visitor_pattern

2.2. DEMO: IMPLICIT TREE WALKING USING VISITORS LAB 2. INTERPRETERS AND TYPES

Arit.g4

AritParser.py AritVisitor.py

Tree.py

inherits from

MyAritVisitor.py

antlr -visitor

inherits from

Figure 2.1: Visitor implementation Python/ANTLR4. ANTLR4 generates AritParser as well as AritVisitor. This

AritVisitor inherits from the ParseTree visitor class (defined in Tree.py of the ANTLR4-Python library, use find to

search for it). When visiting a grammar object, a call to visit calls the highest level visit, which itself calls the accept

method of the Parser object of the good type (in AritParser) which finally calls your implementation of MyAritVisitor

that match this particular type (here Multiplication). This process is depicted by the red cycle.

2.2.2 Basic rules to write an ANTLR4 visitor

what you can write in Python code is dictated by the .g4 file:

• For each alternative of each rule labeled #fooBar, write a method visitFooBar(self, ctx) where
ctx is the corresponding parse subtree. Note the case change, #fooBarhas lower-casefbutvisitFooBar
has upper-case F.

• For each element elem in the right-hand side of the rule (lower-case non-terminal or upper-case ter-
minal), you can access its value with ctx.elem(). For non-terminal (lower-case) elements, the corre-
sponding value is a tree. For terminal (upper-case) elements, it is a token of typeantlr4.Token.CommonToken.
Tokens have in particular a field typewhose value is AritParser.token-name.

• When the element appears several times, access the n-th instance using ctx.elem(n) (starting with 0).
Note that when there’s only one instance, you cannot use ctx.elem(0) but can only write ctx.elem().

• When the element is named like left=expr in the rule, access it with ctx.left (no parenthesis this
time).

• Both trees and tokens have a getText()method returning the corresponding text in the source code.

• Recursive calls on sub-trees are written as self.visit(subtree).

Example: when a ANTLR4 rule contains an operator alternative such as:

| expr addop=(PLUS | MINUS) expr #additiveExpr

you can use the following code in your implementation of visitAdditiveExpr to match the operator:

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 4/11

2.2. DEMO: IMPLICIT TREE WALKING USING VISITORS LAB 2. INTERPRETERS AND TYPES

def visitAdditiveExpr(self, ctx):
leftval = self.visit(ctx.expr(0))
rightval = self.visit(ctx.expr(1))
if ctx.addop.type == AritParser.PLUS:
return leftval + rightval

else:
return leftval -rightval

Note that we wrote PLUS and MINUS in the same rule to have the same level of precedence, and avoid the
issues we had in previous lab.

2.2.3 Application to MiniC Language

The objective is now to use visitors, to type and interpret MiniC programs, whose syntax is depicted in Fig-
ure 2.2.

grammar MiniC;

prog: function* EOF #progRule;

// For now, we don't have "real" functions, just the main() function
// that is the main program, with a hardcoded profile and final
// 'return 0' (actually a 'return INT' because we don't have a ZERO
// lexical token).
function: INTTYPE ID OPAR CPAR OBRACE vardecl_l block

RETURN INT SCOL CBRACE #funcDef;

vardecl_l: vardecl* #varDeclList;

vardecl: typee id_l SCOL #varDecl;

id_l: ID #idListBase
| ID COM id_l #idList
;

block: stat* #statList;

stat: assignment SCOL
| if_stat
| while_stat
| print_stat
;

assignment: ID ASSIGN expr #assignStat;

if_stat: IF OPAR expr CPAR then_block=stat_block
(ELSE else_block=stat_block)? #ifStat;

stat_block: OBRACE block CBRACE
| stat
;

while_stat: WHILE OPAR expr CPAR body=stat_block #whileStat;

print_stat
: PRINTLN_INT OPAR expr CPAR SCOL #printlnintStat
| PRINTLN_FLOAT OPAR expr CPAR SCOL #printlnfloatStat
| PRINTLN_BOOL OPAR expr CPAR SCOL #printlnboolStat
| PRINTLN_STRING OPAR expr CPAR SCOL #printlnstringStat
;

Figure 2.2: MiniC syntax. We omitted here the subgrammar for expressions

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 5/11

2.2. DEMO: IMPLICIT TREE WALKING USING VISITORS LAB 2. INTERPRETERS AND TYPES

EXERCISE #5 Ï Be prepared!
In the directory MiniC/ (outside TP02/), you will find:

• The MiniC grammar (MiniC.g4). Run make to run ANTLR on it and generate the corresponding Python
files.

• Our “main” program (MiniCC.py) which does the parsing of the input file, then launches the Typing
visitor, and if the file is well typed, launches the Interpreter visitor. In this lab it supports four modes:

– python3 MiniCC.py --mode parse <file> checks whether the given file is syntactically valid
MiniC code.

– python3 MiniCC.py --mode typecheck <file> parses the given file and typechecks it.

– python3 MiniCC.py --mode eval <file>parses, typechecks, and interprets the given program.

Try it on some provided examples (e.g. inTypingAndInterpret/tests/provided/examples-types/),
see what happens for well-typed and ill-typed programs (usually named bad_*.c).

• A directory TypingAndInterpret/where files relevant to this lab are.
• One complete visitor: TypingAndInterpret/MiniCTypingVisitor.py, and one to be completed:
TypingAndInterpret/MiniCInterpretVisitor.py.

• Some test cases (TypingAndInterpret/tests), and a test infrastructure.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 6/11

2.3. TYPING THE MINIC-LANGUAGE (MINIC/) LAB 2. INTERPRETERS AND TYPES

2.3 Typing the MiniC-language (MiniC/)

2.3.1 Informal Typing Specification for the MiniC Language

MiniC is a subset of C with stricter rules, and predefined aliases:

typedef char * string;
typedef int bool;
static const int true = 1;
static const int false = 0;

The informal typing rules for the MiniC language are:
• Variables must be declared before being used, and can be declared only once ;
• Binary operations (+, -, *, ==, !=, <=, &&, ||, . . .) require both arguments to be of the same type (e.g.
1 + 2.0 is rejected) ;

• Boolean and integers are incompatible types (e.g. while(1) is rejected) ;
• Binary arithmetic operators return the same type as their operands (e.g. 2. + 3. is a float, 1 / 2 is the

integer division) ;
• Modulo (%) is accepted only on integers, not floats.
• + is accepted on string (it is the concatenation operator), no other arithmetic operator is allowed for

string ;
• Comparison operators (==, <=, . . .) and logic operators (&&, ||) return a Boolean ;
• == and != accept any type as operands ;
• Other comparison operators (<, >=, . . .) accept int and float operands only.
We do not consider real functions, so all your test cases will contain only a main function, without argument

and returning 0.

EXERCISE #6 Ï Demo: play with the Typing visitor
We provide you the code of the typer for the MiniC-language, whose objective is to implement the typing rules
of the course. Open and observe TypingAndInterpret/MiniCTypingVisitor.py, and predict its behavior
on the following MiniC file:
int x;
x="blablabla";
Then, test with:
python3 MiniCC.py --mode eval TypingAndInterpret/tests/provided/examples-types/bad_type00.c
Observe the behavior of the visitor on all test files in example-types/.

• How do we handle a multiplication between int and string operands?
• How do we handle an assignment between a variable and an expression with the “wrong” type?
• How to we remember the declared type for each variable?

EXERCISE #7 Ï Demo: test infrastructure for incorrectly typed programs
On incorrectly typed programs, what we expect from a good test infrastructure is that is capable of checking
if we handled properly the case. This is solved by augmenting the pragma syntax of the previous lab. For
instance:
int x;
x="blablabla";
// EXPECTED
// In function main: Line 5 col 2: type mismatch for x: integer and string
// EXITCODE 2
will be a successful test case. Any error (typing or runtime) must raise the exit code different from 0 (details
below).

To see how the tests work, type:
make test-interpret
Obviously, many tests will fail, since you didn’t write the code yet. If you get an error about the --cov argument,
you didn’t properly install pytest-cov. To allow compiling your MiniC programs with a regular C compiler, a
printlib.h file is provided, and should be #included in all your MiniC test cases3.

3Note that unlike real C, # is a comment in MiniC to avoid actually having to deal with #include

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 7/11

2.4. AN INTERPRETER FOR THE MINIC-LANGUAGE LAB 2. INTERPRETERS AND TYPES

You will later add your own tests: add them all in the TypingAndInterpret/tests/students/ directory
(mandatorily).

Note that the test infrastructure does two things on each file:

• Run your interpreter, and check that its behavior matches the annotation in the source file, to find bugs
in your interpreter. This corresponds to the lines test_eval in the output of make test-interpret.

• Run the same file through GCC and execute it, to check that the annotations in the source file are correct
with a GCC execution, to find bugs in your annotations. This corresponds to the lines test_expect in
the output. You can disable this check when GCC and your interpreter have different behavior (e.g. for
division by zero), by adding the annotation // SKIP TEST EXPECTED in the source file. It is normal to
have some test_expect skipped (you just don’t have the check that your annotations are OK when this
happens), but you should have all test_eval pass.

2.4 An interpreter for the MiniC-language

2.4.1 Informal Specifications of the MiniC Language Semantics

MiniC is a small imperative language inspired from C, with more restrictive typing and semantic rules. Some
constructs have an undefined behavior in C and well defined semantics in MiniC:

• Variables that are not explicitly initialized in the program are automatically initialized:
– to 0 for int,
– to 0.0 for float,
– to false for bool,
– to the empty string "" for string.

• Divisions and modulo by 0 must print the message “Division by 0” and stop program execution with
status 1 (use raise MiniCRuntimeError("Division by 0") to achieve this in the interpreter).

• Conventions for division and modulo are the same as in C: division is truncated toward zero, and modulo
is such that (a/b)∗b +a%b = a.

4/3 = 1 4%3 = 1
(−4)/3 = −1 (−4)%3 = −1
4/(−3) = −1 4%(−3) = 1

(−4)/(−3) = 1 (−4)%(−3) = −1

2.4.2 Implementation of the Interpreter

The semantics of the MiniC language (how to evaluate a given MiniC program) is defined by induction on the
syntax. You already saw how to evaluate a given expression, this is depicted in Figure 2.3.

EXERCISE #8 Ï Interpreter rules (on paper)
First fill the empty cells in Figure 2.4, then ask your teaching assistant to correct them.

EXERCISE #9 Ï Interpreter
Now you have to implement the interpreter of the MiniC language. We give you the structure of the code and
the implementation for numerical expressions and boolean expressions (except modulo!). You can reason
in terms of “well-typed programs”, since badly typed programs should have been rejected earlier.

Run the command:
make
python3 MiniCC.py --mode eval TypingAndInterpret/tests/provided/examples/test_print_int.c

and the interpreter will be run on test_print_int.c. On the particular example test_print_int.c
observe how integer values are printed.

You still have to implement (in MiniCInterpretVisitor.py):

1. The modulo version of Multiplicative expressions (for the C language semantics of modulo).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 8/11

2.4. AN INTERPRETER FOR THE MINIC-LANGUAGE LAB 2. INTERPRETERS AND TYPES

literal constant c
return int(c) or float(c)

variable name x
find value of x in dictionary and return it

e1+e2
v1 <- e1.visit()
v2 <- e2.visit()
return v1+v2

true return true

e1 < e2
return e1.visit()<e2.visit()

Figure 2.3: Interpretation (Evaluation) of expressions

x := e
v <- e.visit()
store(x,v) #update the value in dict

println_int(e)
v <- e.visit()
print(v) # python’s print

S1; S2
s1.visit()
s2.visit()

if b then S1 else S2

while b do S done

Figure 2.4: Interpretation for Statements (pseudo-code)

2. Variable declarations (varDecl) and variable use (idAtom): your interpreter should use a table (dict in
PYTHON) to store variable definitions and check if variables are correctly defined and initialized. Do

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 9/11

2.4. AN INTERPRETER FOR THE MINIC-LANGUAGE LAB 2. INTERPRETERS AND TYPES

not forget to initialize dict with the initial values (0, 0.0, False or "" depending on the type) for all
variable declarations.

3. Statements: assignments, conditional blocks, tests, loops.

Error codes The exit code of the interpreter should be:
• 1 in case of runtime error (e.g. division by 0, absence of main function)
• 2 in case of typing error
• 3 in case of syntax error
• 4 in case of internal error (i.e. error that should never happen except during debugging)
• 5 in case of unsupported construct (should not be used in this lab, but you will need it to reject strings

and floats during code generation)
• And obviously, 0 if the program is typechecked and executed without errors.
The fileMiniCC.py in the skeleton already does this for you if you raise the right exception (seeLib/Errors.py).

You need to use these codes as test annotations in programs raising errors:

• Programs raising a runtime error should be annotated with // EXECCODE 1

• Programs rejected by the interpreter before execution should be annotated with // EXITCODE n, with
n being 2, 3, 4 or 5 as documented above.

The distinction between EXECCODE and EXITCODE seems subtle for an interpreter, but will be more obvious
for a compiler, where EXITCODEwill refer to the exit code of the compiler, and EXECCODE to the exit code of the
program’s execution.

EXERCISE #10 Ï Automated tests

Test with make test-interpret and write an appropriate test-suite. You need not test the typechecker
(i.e. tests raising a typing error are not needed). You must provide your own tests: they will be graded
depending on their quality. The only outputs are the one from the println_* function or the following error
messages: “m has no value yet!” (or possibly “Undefined variable m”, but this error should never
happen if your typechecker did its job properly) where m is the name of the variable. In case the program has
no main function, the typechecker accepts the program, but it cannot be executed, hence the interpreter raises
a “No main function in file” runtime error.

Test Infrastructure Tests work mostly as in the previous lab. By default, the testsuite is ran on
all .c files in the TypingAndInterpret/tests/ directory. You may restrict to a set of files us-
ing “make test-interpret FILTER=...”. FILTER is either a single file or an extended wildcard like
FILTER=TypingAndInterpret/tests/provided/**/*.c (**matches any directory hierarchy).

Source files should contain // EXPECTED and // EXITCODE n pragmas to specify the expected behavior
of the compiler. They are special comments (the // is needed to keep compatibility with C, only the testsuite
considers them as special). The EXITCODE corresponds to the exit codes described in Section 2.4.2.

For instance, if you fail test_print_int.c because you printed 43 instead of 42, using the command
make test-interpret FILTER=TypingAndInterpret/tests/provided/examples/test_print_int.c
you will get this error:
____________TestInterpret.test_eval[TypingAndInterpret/tests/provided/examples/test_print_int.c] ____________

self = <test_interpreter.TestInterpret object at 0x7f05d6f86a40>,
filename = ’TypingAndInterpret/tests/provided/examples/test_print_int.c’

@pytest.mark.parametrize(’filename’, ALL_FILES)
def test_eval(self, filename):

cat(filename) # For diagnosis
expect = self.get_expect(filename)
eval = self.evaluate(filename)
if expect:

> self.assert_equal(eval, expect)

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 10/11

2.5. FINAL DELIVERY LAB 2. INTERPRETERS AND TYPES

test_interpreter.py:48:
_ _
self = <test_interpreter.TestInterpret object at 0x7f05d6f86a40>,
actual = testinfo(exitcode=0, execcode=0, output=’43\n’, linkargs=[], skip_test_expected=False)
expected = testinfo(exitcode=0, execcode=0, output=’42\n’, linkargs=[], skip_test_expected=False)

def assert_equal(self, actual, expected):
if expected.output is not None and actual.output is not None:

> assert actual.output == expected.output, \
"Output of the program is incorrect."

E AssertionError: Output of the program is incorrect.
E assert ’43\n’ == ’42\n’
E - 42
E + 43

test_interpreter.py:35: AssertionError

And if you did not print anything at all when 42was expected, the last lines would be this instead:
def assert_equal(self, actual, expected):

if expected.output is not None and actual.output is not None:
> assert actual.output == expected.output, \

"Output of the program is incorrect."
E AssertionError: Output of the program is incorrect.
E assert ’’ == ’42\n’
E - 42

test_interpreter.py:35: AssertionError

2.5 Final delivery

We recall that your work is personal and code copy (including tests) is strictly forbidden. Read REGLES-
TPs.md again if in needed.

EXERCISE #11 Ï Archive
The interpreter (all exercises in Section 2.4, i.e. Python code and tests, in students/) is due on TOMUSS
(deadline on the course webpage). Type make tar to obtain the archive to send. Your archive must also
contain a (minimal) README-interpreter.mdwith your name, your design choices, known bugs, if any. Don’t
spend more than 10 minutes on your README-interpreter.md.

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 11/11

https://forge.univ-lyon1.fr/matthieu.moy/mif08-2025/-/blob/main/REGLES-TPs.md
https://forge.univ-lyon1.fr/matthieu.moy/mif08-2025/-/blob/main/REGLES-TPs.md

	Interpreters and Types
	Typing Annotations in Python
	Demo: Implicit tree walking using Visitors
	Interpret (evaluate) arithmetic expressions with visitors
	Basic rules to write an ANTLR4 visitor
	Application to MiniC Language

	Typing the MiniC-language (MiniC/)
	Informal Typing Specification for the MiniC Language

	An interpreter for the MiniC-language
	Informal Specifications of the MiniC Language Semantics
	Implementation of the Interpreter

	Final delivery

