
Related Work jTLM, Tasks with Duration sc-during Conclusion

Parallel Programming with SystemC for Loosely
Timed Models: A Non-Intrusive Approach

Matthieu Moy

Grenoble University / Verimag
France

DATE, March 19th 2013

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 1 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Modern Systems-on-a-Chip

Software

Hardware

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 2 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Modern Systems-on-a-Chip

Software

Hardware

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 2 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Transaction-Level Modeling

(Fast) simulation essential in the design-flow
I To write/debug software
I To validate architectural choices
I As reference for hardware verification

Transaction-Level Modeling (TLM):
I High level of abstraction
I Suitable for

Industry Standard = SystemC/TLM

Issue: SystemC has co-routine semantics
⇒ hard to exploit host parallelism.

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 3 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Transaction-Level Modeling

(Fast) simulation essential in the design-flow
I To write/debug software
I To validate architectural choices
I As reference for hardware verification

Transaction-Level Modeling (TLM):
I High level of abstraction
I Suitable for

Industry Standard = SystemC/TLM

Issue: SystemC has co-routine semantics
⇒ hard to exploit host parallelism.

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 3 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Transaction-Level Modeling

(Fast) simulation essential in the design-flow
I To write/debug software
I To validate architectural choices
I As reference for hardware verification

Transaction-Level Modeling (TLM):
I High level of abstraction
I Suitable for

Industry Standard = SystemC/TLM

Issue: SystemC has co-routine semantics
⇒ hard to exploit host parallelism.

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 3 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Transaction-Level Modeling

(Fast) simulation essential in the design-flow
I To write/debug software
I To validate architectural choices
I As reference for hardware verification

Transaction-Level Modeling (TLM):
I High level of abstraction
I Suitable for

Industry Standard = SystemC/TLM

Issue: SystemC has co-routine semantics
⇒ hard to exploit host parallelism.

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 3 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Outline

1 Existing Parallelization Approaches

2 jTLM, Tasks with Duration

3 sc-during: duration in SystemC

4 Conclusion

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 3 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Issues and Solutions for Parallelization
1 Preserve SystemC scheduling semantics

(a) Parallelization within instant/δ-cycle
(b) Optimistic approaches: require specific coding style

2 Avoid introducing data-races (e.g. i++ on shared variable)

(c) Assume no shared variables
(d) Semantics-preserving: don’t run two processes accessing the

same variables

Most approaches work for RTL/cycle-accurate:
I Clocks⇒ many processes executing at the same time (a)
I sc_signal⇒ avoids shared variables (c)

Problems with loosely timed TLM:
I Loose timing⇒ few processes runnable at the same time (a)
I Communication using function calls⇒ many shared variables (c)
I Few wait statements⇒ 1 SystemC transition touches many

variables (d)

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 4 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Issues and Solutions for Parallelization
1 Preserve SystemC scheduling semantics

(a) Parallelization within instant/δ-cycle
(b) Optimistic approaches: require specific coding style

2 Avoid introducing data-races (e.g. i++ on shared variable)

(c) Assume no shared variables
(d) Semantics-preserving: don’t run two processes accessing the

same variables

Most approaches work for RTL/cycle-accurate:
I Clocks⇒ many processes executing at the same time (a)
I sc_signal⇒ avoids shared variables (c)

Problems with loosely timed TLM:
I Loose timing⇒ few processes runnable at the same time (a)
I Communication using function calls⇒ many shared variables (c)
I Few wait statements⇒ 1 SystemC transition touches many

variables (d)

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 4 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Issues and Solutions for Parallelization
1 Preserve SystemC scheduling semantics

(a) Parallelization within instant/δ-cycle
(b) Optimistic approaches: require specific coding style

2 Avoid introducing data-races (e.g. i++ on shared variable)
(c) Assume no shared variables
(d) Semantics-preserving: don’t run two processes accessing the

same variables

Most approaches work for RTL/cycle-accurate:
I Clocks⇒ many processes executing at the same time (a)
I sc_signal⇒ avoids shared variables (c)

Problems with loosely timed TLM:
I Loose timing⇒ few processes runnable at the same time (a)
I Communication using function calls⇒ many shared variables (c)
I Few wait statements⇒ 1 SystemC transition touches many

variables (d)

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 4 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Issues and Solutions for Parallelization
1 Preserve SystemC scheduling semantics

(a) Parallelization within instant/δ-cycle
(b) Optimistic approaches: require specific coding style

2 Avoid introducing data-races (e.g. i++ on shared variable)
(c) Assume no shared variables
(d) Semantics-preserving: don’t run two processes accessing the

same variables

Most approaches work for RTL/cycle-accurate:
I Clocks⇒ many processes executing at the same time (a)
I sc_signal⇒ avoids shared variables (c)

Problems with loosely timed TLM:
I Loose timing⇒ few processes runnable at the same time (a)
I Communication using function calls⇒ many shared variables (c)
I Few wait statements⇒ 1 SystemC transition touches many

variables (d)

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 4 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Issues and Solutions for Parallelization
1 Preserve SystemC scheduling semantics

(a) Parallelization within instant/δ-cycle
(b) Optimistic approaches: require specific coding style

2 Avoid introducing data-races (e.g. i++ on shared variable)
(c) Assume no shared variables
(d) Semantics-preserving: don’t run two processes accessing the

same variables

Most approaches work for RTL/cycle-accurate:
I Clocks⇒ many processes executing at the same time (a)
I sc_signal⇒ avoids shared variables (c)

Problems with loosely timed TLM:
I Loose timing⇒ few processes runnable at the same time (a)
I Communication using function calls⇒ many shared variables (c)
I Few wait statements⇒ 1 SystemC transition touches many

variables (d)

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 4 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Our Approach: SC-DURING

Goals:
I Efficient for loosely timed SystemC/TLM
I Existing code should continue working
I Work with any SystemC implementation

Principle:
I Library (adds constructs, feel free not to use them)
I Notion of duration

Source of inspiration: jTLM (Java simulator)

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 5 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Outline

1 Existing Parallelization Approaches

2 jTLM, Tasks with Duration

3 sc-during: duration in SystemC

4 Conclusion

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 5 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

(Simulated) Time in SystemC and jTLM
S

ys
te

m
C

jT
LM

A

B

P

Q

Process A:
//computation
f();
//time taken by f
wait(20, SC_NS);

f()
wait(20)

Process P:
g();
awaitTime(20);
consumesTime(15) {
h();

}

g()
awaitTime

h()

i() j()

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 6 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

(Simulated) Time in SystemC and jTLM
S

ys
te

m
C

jT
LM

A

B

P

Q

Process A:
//computation
f();
//time taken by f
wait(20, SC_NS);

f()
wait(20)

Process P:
g();
awaitTime(20);
consumesTime(15) {
h();

}

g()
awaitTime

h()

i() j()

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 6 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

(Simulated) Time in SystemC and jTLM
S

ys
te

m
C

jT
LM

A

B

P

Q

Process A:
//computation
f();
//time taken by f
wait(20, SC_NS);

f()
wait(20)

Process P:
g();
awaitTime(20);
consumesTime(15) {
h();

}

g()
awaitTime

h()

i() j()

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 6 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

(Simulated) Time in SystemC and jTLM
S

ys
te

m
C

jT
LM

A

B

P

Q

Process A:
//computation
f();
//time taken by f
wait(20, SC_NS);

f()
wait(20)

Process P:
g();
awaitTime(20);

consumesTime(15) {
h();

}

g()
awaitTime

h()

i() j()

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 6 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

(Simulated) Time in SystemC and jTLM
S

ys
te

m
C

jT
LM

A

B

P

Q

Process A:
//computation
f();
//time taken by f
wait(20, SC_NS);

f()
wait(20)

Process P:
g();
awaitTime(20);
consumesTime(15) {
h();

}

g()
awaitTime

h()

i() j()

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 6 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

(Simulated) Time in SystemC and jTLM
S

ys
te

m
C

jT
LM

A

B

P

Q

Process A:
//computation
f();
//time taken by f
wait(20, SC_NS);

f()
wait(20)

Process P:
g();
awaitTime(20);
consumesTime(15) {
h();

}

g()
awaitTime

h()

i() j()

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 6 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Execution of consumesTime(T)

Slow computation

Simulated time
0 10 20 30 40

W
al

l-c
lo

ck
tim

e

Task starts

Simulated
time

blocked

Task
finishes

Fast computation

Simulated time
0 10 20 30 40

W
al

l-c
lo

ck
tim

e

Task starts

Computation
ends

Task
finishes

Rest of the
platform

drives time

idle

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 7 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Parallelization

P1

P2

P3

P4

jTLM’s Semantics

Simultaneous tasks run
in parallel

Non-simultaneous tasks don’t
Overlapping tasks do

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 8 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Parallelization

P1

P2

P3

P4

jTLM’s Semantics

Simultaneous tasks run
in parallel
Non-simultaneous tasks don’t

Overlapping tasks do

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 8 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Parallelization

P1

P2

P3

P4

jTLM’s Semantics

Simultaneous tasks run
in parallel
Non-simultaneous tasks don’t
Overlapping tasks do

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 8 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Outline

1 Existing Parallelization Approaches

2 jTLM, Tasks with Duration

3 sc-during: duration in SystemC

4 Conclusion

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 8 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

jTLM is cool ...

... but nobody will use it.
⇒ Implement the duration idea in SystemC:

I Keep the SystemC scheduler
I let SystemC processes delegate computation to a separate thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 9 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

jTLM is cool ...

... but nobody will use it.

⇒ Implement the duration idea in SystemC:
I Keep the SystemC scheduler
I let SystemC processes delegate computation to a separate thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 9 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

jTLM is cool ...

... but nobody will use it.
⇒ Implement the duration idea in SystemC:

I Keep the SystemC scheduler
I let SystemC processes delegate computation to a separate thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 9 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Sketch of Implementation
void during(sc_core::sc_time duration,

boost::function<void()> routine) {
À boost::thread t(routine); // create thread
Á sc_core::wait(duration); // let SystemC execute
Â t.join(); // wait for thread completion

}

A

B

C

thread

during(5, f);

create
thread

routine

Á wait(d)
join
thread

Â

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 10 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Sketch of Implementation
void during(sc_core::sc_time duration,

boost::function<void()> routine) {
À boost::thread t(routine); // create thread
Á sc_core::wait(duration); // let SystemC execute
Â t.join(); // wait for thread completion

}

A

B

C

thread

during(5, f);

create
thread

routine

Á wait(d)
join
thread

Â

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 10 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Sketch of Implementation
void during(sc_core::sc_time duration,

boost::function<void()> routine) {
À boost::thread t(routine); // create thread
Á sc_core::wait(duration); // let SystemC execute
Â t.join(); // wait for thread completion

}

A

B

C

thread

À

during(5, f);

create
thread

routine

Á wait(d)
join
thread

Â

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 10 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Sketch of Implementation
void during(sc_core::sc_time duration,

boost::function<void()> routine) {
À boost::thread t(routine); // create thread
Á sc_core::wait(duration); // let SystemC execute
Â t.join(); // wait for thread completion

}

A

B

C

thread

À

during(5, f);

create
thread

routine

Á wait(d)

join
thread

Â

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 10 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Sketch of Implementation
void during(sc_core::sc_time duration,

boost::function<void()> routine) {
À boost::thread t(routine); // create thread
Á sc_core::wait(duration); // let SystemC execute
Â t.join(); // wait for thread completion

}

A

B

C

thread

À

during(5, f);

create
thread

routine

Á wait(d)

join
thread

Â

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 10 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Sketch of Implementation
void during(sc_core::sc_time duration,

boost::function<void()> routine) {
À boost::thread t(routine); // create thread
Á sc_core::wait(duration); // let SystemC execute
Â t.join(); // wait for thread completion

}

A

B

C

thread

À

during(5, f);

create
thread

routine

Á wait(d)
join
thread

Â

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 10 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Sketch of Implementation
void during(sc_core::sc_time duration,

boost::function<void()> routine) {
À boost::thread t(routine); // create thread
Á sc_core::wait(duration); // let SystemC execute
Â t.join(); // wait for thread completion

}

A

B

C

thread

À

during(5, f);

create
thread

routine

Á wait(d)
join
thread

Â

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 10 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Wait ... are you saying that
parallelization is just about

fork/join?

Well, sometimes it is ...

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 11 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Wait ... are you saying that
parallelization is just about

fork/join?
Well, sometimes it is ...

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 11 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

When Things are Easy: Pure Function

Before
compute_in_systemc();

// my profiler says it’s
// performance critical.
// does not communicate
// with other processes.
big_computation();
wait(10, SC_MS);

next_computation();

After
compute_in_systemc();

// Won’t be a performance
// bottleneck anymore
during(10, SC_MS,

big_computation);

next_computation();

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 12 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Wait ... are you saying that
parallelization is just about

fork/join?
Well, sometimes it is ...

... and sometimes it isn’t:
Time synchronization: make sure things are executed

at the right simulated time
Data/scheduler synchronization: avoid data-race

between tasks, processes and the SystemC
scheduler.

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 13 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Wait ... are you saying that
parallelization is just about

fork/join?
Well, sometimes it is ...

... and sometimes it isn’t

:
Time synchronization: make sure things are executed

at the right simulated time
Data/scheduler synchronization: avoid data-race

between tasks, processes and the SystemC
scheduler.

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 13 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Wait ... are you saying that
parallelization is just about

fork/join?
Well, sometimes it is ...

... and sometimes it isn’t:
Time synchronization: make sure things are executed

at the right simulated time
Data/scheduler synchronization: avoid data-race

between tasks, processes and the SystemC
scheduler.

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 13 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Synchronization

extra_time(t): increase current task duration

P
wait(5)

initial
duration extra time

catch_up(t): block task until SystemC’s time reaches the end of the
current task

while (!c) {
extra_time(10, SC_NS);
catch_up(); // ensures fairness

}

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 14 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Synchronization

extra_time(t): increase current task duration

P
wait(5)

initial
duration extra time

catch_up(t): block task until SystemC’s time reaches the end of the
current task

while (!c) {
extra_time(10, SC_NS);
catch_up(); // ensures fairness

}

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 14 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

extra_time(): Sketch of Implementation
SystemC side:

void during(duration, routine) {
end = now() + duration;
boost::thread t(routine);
// used to be just sc_core::wait(duration)
while (now() != end)

sc_core::wait(end - now());
t.join();

}

SC-DURING task side:

void extra_time(duration) {
end += duration;

}

void catch_up() {
while (now() != end)

// avoid busy-waiting
condition.wait();

}

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 15 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Temporal decoupling and SC-DURING

Plain SystemC
f();
// instead of wait(42)
t_local += 42;
g();
t_local += 12;

// Re-synchronize with
// SystemC time
wait(t_local);
t_local = 0;

i();

Inside SC-DURING tasks
f();
// instead of wait(42)
extra_time(42);
g();
extra_time(12);

// Re-synchronize with
// SystemC time
catch_up();

i();

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 16 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): be cooperative for a while

sc_call(f): call function f in the context of SystemC

e.notify(); // Forbidden in during tasks

sc_call("e.notify()"); // OK (modulo syntax)
sc_call("i++"); // implicit big lock,

// no data-race

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 17 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call(): Sketch of Implementation

A

B

C

thread

during(5, f);

create
thread

wait(d or sync_ev)

sc_call(g)

notify
sync_ev

g

sc_call_f

= 0

wait

join
thread

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 18 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

sc_call: Sketch of Implementation

void during(duration, f) {
end = now() + duration;
boost::thread t(f);
while (now() != end) {

// wait sync_ev
// with timeout:
sc_core::wait

(sync_ev,// <--
end - now());

if (sc_call_f) {
sc_call_f();// <--
sc_call_f = 0;
condition.notify();

}
}
t.join();

}

void sc_call(f) {
sc_call_f = f;
// Implemented
// with SystemC 2.3’s
// async_request_update()
async_notify_event

(sync_ev);
while(sc_call_f != 0) {

condition.wait();
}

}

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 19 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Actual Implementation

SC_THREAD_1

SC_THREAD_2

...

SC_THREAD_N

sync_task_1 OS thread_1

sync_task_2 OS thread_2

sync_task_N OS thread_N

SystemC OS Threads

Possible strategies:
SEQ Sequential (= reference)

THREAD Thread created/destroyed each time
POOL Pre-allocated worker threads pool

ONDEMAND Thread created on demand and reused later
Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 20 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Results

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60

S
pe

ed
up

Number of CPU in the platform

thread, during_quant
thread, during_sync

ondemand, during_quant
ondemand, during_sync

Loosely-Timed
Models

Fine-grain Timing

Test machine has 4× 12 = 48 cores
Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 21 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

Outline

1 Existing Parallelization Approaches

2 jTLM, Tasks with Duration

3 sc-during: duration in SystemC

4 Conclusion

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 21 / 22 >

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Conclusion

New way to express concurrency in the platform
Allows parallel execution of loosely-timed (clockless) systems
Future work: performance optimizations (e.g. atomic operations +
polling instead of system calls)

Try it:
https://forge.imag.fr/projects/sc-during/

Questions?

Thank You!

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 22 / 22 >

https://forge.imag.fr/projects/sc-during/

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Conclusion

New way to express concurrency in the platform
Allows parallel execution of loosely-timed (clockless) systems
Future work: performance optimizations (e.g. atomic operations +
polling instead of system calls)

Try it:
https://forge.imag.fr/projects/sc-during/

Questions?

Thank You!

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 22 / 22 >

https://forge.imag.fr/projects/sc-during/

Related Work jTLM, Tasks with Duration sc-during Conclusion

SC-DURING: Conclusion

New way to express concurrency in the platform
Allows parallel execution of loosely-timed (clockless) systems
Future work: performance optimizations (e.g. atomic operations +
polling instead of system calls)

Try it:
https://forge.imag.fr/projects/sc-during/

Questions?

Thank You!

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 22 / 22 >

https://forge.imag.fr/projects/sc-during/

Related Work jTLM, Tasks with Duration sc-during Conclusion

Sources

http://en.wikipedia.org/wiki/File:Diopsis.jpg
(Peter John Bishop, CC Attribution-Share Alike 3.0 Unported)

http://www.fotopedia.com/items/flickr-367843750
(oskay@fotopedia, CC Attribution 2.0 Generic)

Matthieu Moy (Verimag) Parallel Programming with SystemC DATE, March 19th 2013 < 22 / 22 >

http://en.wikipedia.org/wiki/File:Diopsis.jpg
http://www.fotopedia.com/items/flickr-367843750

	Existing Parallelization Approaches
	jTLM, Tasks with Duration
	sc-during: duration in SystemC
	Time Synchronization
	Data Synchronization
	Implementation and Performance

	Conclusion

