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Je tiens aussi à remercier Yohan, les doctorants ainsi que les stagiaires de la plateforme pour
leurs conseils et nos discussions.

2



Abstract

Reactive systems are systems that constantly react to their environment. One must guaran-
tee that the computation time of the system is bounded and matches the input-output latency
imposed by the environment (for instance the period of measure of the altitude for a flight con-
trol system). We talk about multi-periodic systems when the nodes of a program are running at
different periods. Today, reactive programs are more and more complex, and we reach the limit
of the single-processors in term of computation. Consequently, the size of the program is lim-
ited to match the time requirements. Most of the processors are multi or many-core. But they
are complex and the Worst-Case Execution Time of a program executed on these architectures
is hard to compute without excessive pessimism. Yet, the Kalray MPPA many-core architecture
is predictable and allows to bound both the execution time and the transmission time between
the many-core clusters.

Our purpose is to run synchronous programs on many-core architectures with bounded
delays. On one hand, we consider a synchronous program composed of several nodes com-
municating together, on the other hand a many-core chip composed of several clusters and a
Network-On-Chip (NoC). The first problem is to find a way to map the nodes on the clusters.
The other problem is to give the semantics of the communication between the nodes. The
semantics must be deterministic and preservable when implemented on the many-core archi-
tecture to guarantee equivalence between the synchronous program and the implementation.
We give a deterministic semantics to communications between the nodes of different periods.
We give the implementation of a multi-periodic program on the Kalray MPPA. Finally, we
evaluate our solution by testing. Our method provides a key element toward the deterministic
implementation of reactive programs on many-core architecture: a way to preserve a central-
ized deterministic semantics of a multi-periodic program, when the program parts exchange
information via the NoC.
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Introduction

1.1 Reactive Systems

Reactive systems are systems that continuously react to their environment at a speed determined
by this environment. Control systems such as flight control systems or heater control system are
examples of reactive systems. The timing constraints of the reactive systems are determined
by the environment. Meeting them is critical for some applications (for instance the flight
control system). For example, in the heater control (presented in Fig. 1.1), we do not sample
the temperature with the same speed as the emergency stop button. The system must stop if
someone presses the button even briefly, hence the sampling rate must be able to catch this
short even. But, the temperature of a room is a physical value which has slow changes. We
must ensure that the reactive program is able to execute sufficiently fast to tolerate these timing
constraints.

Today, the reactive programs are more and more complex in terms of computational power.
We reached the limit of the single-core processors. Furthermore, most of the current processors
are multi- or many-core. Running the reactive programs on this kind of processor would give
more computation power.

Figure 1.1: Educational example of a reactive system controlling a heater. It controls the heater
in function of temperature thresholds. The emergency button stops the heater.
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Figure 1.2: This figure represents an (educational) heater control system. It is a node with
two inputs: the Emergency stop signal and the temperature value. The output is a signal to
enable the heater. The circles represent the computations of the node, the triangle represents
the sampling operator when, and the rectangles are sub-nodes.

Reactive programs are often composed of several nodes communicating together. From the
timing constraints of the system one can assign execution periods to each part of a synchronous
program. For instance, the node comparing the temperature with the thresholds (cf. Fig. 1.2)
can run every ten seconds or so, whereas the period of the part managing the emergency button
must be of 10 ms or so. To be able to execute a task at each period of time, we must ensure
this task completes during this period. The computation of the Worst-Case Execution Time
(WCET) is essential in the timing constraint verification.

A multi-periodic reactive system is composed of several nodes running at different periods.
One can wonder what happens if a node generates values on a different rhythm than the node
consuming these values. One way to give meaning to the communication is the communication-
by-sampling principle. The basic implementation which consists in making a node communi-
cating as soon as the computation finishes, and another node taking the last available value is
called “freshest value” and is not deterministic because it depends on the tasks execution time
(cf. Section 2.4.3).

The work of Caspi et al [3] explains how to fit more complex synchronous programs on one
processor. The solution is based on a RTOS and the program can be multi-periodic. It defines a
deterministic protocol based on buffers to implement communication-by-sampling. But, even
with this solution, we reach the hardware limit of the single core in terms of computational
power.

1.2 Many-core Architecture
Most of the recent processors are multi- or many-core. But, most of them are complex and
optimised for average performances and thus make the WCET computation very pessimistic, if
at all bounded.

A many-core architecture able to handle real-time programs is a possible successor to single
processors because it offers more computational power. The many-core architectures bring sev-
eral advantages compared to the multi-core architectures because the cores are more isolated.
Hence, they avoid the cache coherency problem happening when several cores of a multi-core
communicate through the shared memory. Furthermore, in many-core architectures, each core
is simple (hence often more predictable).
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The Kalray MPPA architecture is the only many-core processor on the market guaranteeing
both bounded execution time and bounded communication time. Each core has neither branch
prediction nor complex pipeline, and the caches have the Least Recently Used (LRU) policy
which is known to be predictable. The access to the shared memory can be bounded since
there is no cache coherency mechanism and the shared memory is divided into independent
banks to remove interferences. A Network-On-Chip allows communication between the clus-
ters with bounded transmission time thanks to a flow control mechanism guaranteeing latency
and throughput.

1.3 Implementation of Synchronous Program on Many-
core Architecture
The purpose of this work is to implement synchronous programs on such a many-core archi-
tecture. It raises several problems:

1. How to split and map a synchronous program on a many-core architecture?

2. How to define the semantics of data-exchanges semantics between the nodes (communication-
by-sampling)?

The first problem is out of the scope of this thesis. We consider that the program is split into
several nodes and the placement of these nodes on the clusters of the many-core architecture is
given.

Our work is focused on the second problem. Namely, we consider two nodes A and B
executing on different periods. If A generates values and B consumes values. As the periods
of the two nodes differ, we need to define the relation between the consumed and the produced
values. This relation must be deterministic (a counter-example is the “freshest value”).

Contribution Let us consider a set of nodes of a synchronous program, the execution periods
and the wires between the nodes. Furthermore, we consider given a mapping on the many-core
architecture.

• We give deterministic semantics for the data-exchanges between nodes of a multi-periodic
synchronous programs.

• We provide a method to implement this semantics on a many-core architecture and to
verify that the semantics holds when implemented on the architecture.

• We provide an implementation of a multi-period synchronous program on the Kalray
MPPA.

Section 2 presents the reactive systems. Section 3 shows why the Kalray MPPA architecture
is a good choice to implement reactive programs. Section 4 defines the problem of implement-
ing a reactive program on the Kalray MPPA. Section 5 presents the solution. Section 6 gives the
details of implementation. And Section 7 evaluates the correctness of our solution. Section 8
gives the related work and Section 9 gives some conclusions and future works.
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Reactive Systems and Synchronous
Programming Languages

2.1 Reactive Systems
Reactive systems are systems that continuously react to their environment at a speed determined
by this environment. For instance, a control system is a reactive system. To illustrate our
explanation we present an example of a heating control system.

Fig. 1.1 gives an overview of this system. The purpose is to turn the heater on and off. The
first input is from the temperature sensor, the second is an emergency stop button. The heater
is controlled according to an hysteresis: it is turned on when the temperature is below a low
threshold and turned off when the temperature is above a high threshold. In any case, if the
emergency button is pushed, the heater stops.

The environment influences the sampling rate required for the two inputs. For this system,
sampling the temperature with a period of some seconds is sufficient, however the emergency
stop button can be pressed briefly, so a faster rate is needed to avoid losing the event.

2.2 Programming Reactive Systems
A reactive system can be programmed with an infinite loop (Fig. 2.1 gives an example code).
We remark that each operation (read, compute and write) of a reactive program takes time to
execute. The duration of one iteration of the loop defines the sampling rate of the inputs, it
must be sufficient for the sampling rate imposed by the environment.

As soon as the system becomes complex, programming directly with an infinite loop be-
comes tedious and error-prone. Hence, specific languages such as Lustre have been designed.

init mem;
while(true) {

inputs = read_sensors();
outputs = compute(inputs, mem);
write(outputs);
update(mem);

}

Figure 2.1: Example code for a reactive pro-
gram. It loops forever and as fast as possible.
Another implementation is to transform the
loop into a periodic task (as in Fig. 2.2).

actual execution times
WCET

Figure 2.2: The vertical arrows represent the ac-
tivations of the while loop body. The Worst-
Case Execution Time (WCET) is the upper
bound of the execution time. We represent three
possible execution times.
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node compute(x, y:
int)
returns (o: int);

var
t: int;

let
o = t * y;
t = (x - 1);

tel

Figure 2.3: The semantics of a Lustre program is close to that of a logical circuit. The code
defines equations between inputs and outputs. Equations can be derived from the dataflow
diagram naming each wire.

2.3 Lustre

Lustre [10] is a dataflow language designed to program reactive systems. The program can
be seen as an equational system between inputs and outputs. As shown in Fig. 2.3, a Lustre
program is analog to a logical circuit. As for a logical circuit, instantaneous cycles are forbidden
(e.g. o = 2*o is forbidden).

2.3.1 Variables and Flows
In Lustre, a variable is a flow of values indexed by natural numbers. This flow represents
successive instants in time.

Operator pre The pre operator gives the previous value of an expression. An example is
given below. This operator allows to express a variable as a function of its previous values in
the flow, but instantaneous cycles are forbidden. Example: X = Y * pre(X) is allowed,
but X = Y * X is forbidden.

Logical instants of X 0 1 2 3 4 5
X x0 x1 x2 x3 x4 x5

pre(X) x0 x1 x2 x3 x4

In the first instant, pre(x) is not defined.

Operator “−>” This is an initialization operator to define the first value of a flow. See
example:

X x0 x1 x2 x3 x4 x5
Y y0 y1 y2 y3 y4 y5

pre(X) x0 x1 x2 x3 x4
Y−>pre(X) y0 x0 x1 x2 x3 x4

8



node holder(on, off: bool) returns (o: bool)
let

o = false -> (pre(o) or on) and not off;
tel

Figure 2.4: Example of node showing how a value can be computed with a previous value in
the flow.

2.3.2 Nodes
In Lustre, the code is structured into nodes. The code Fig. 2.4 shows an example node.

A node can be called in an expression. For instance X = holder(b1, b2) calls the
node holder. If a node is called several times, several instances of it are produced (each with
its own memory).

2.3.3 Clocks
In Lustre, a clock is a flow of Boolean values. Every flow in Lustre is defined on a clock. There
exists a clock tree and a base clock which is the root of the tree.

Operator when The when operator allows to sample an expression at the rhythm of a clock.
In the table below, X is a flow. The flow Y takes the values of the flow X when C is true and is
not defined otherwise.

Operator current For a flow Y defined on a sub-clock C of the root clock, this operator adds
the missing instants in the resulting flow (Z = current Y) to match with the clock of the
expression As clocks are organized in a tree, if the clock of an expression is not defined, it takes
the base clock of the node. For the missing instants of the source flow, the command holds the
last value.

Logical instants of X 0 1 2 3 4 5
X x0 x1 x2 x3 x4 x5
C 1 1 0 1 0 1

Y = X when C x0 x1 x3 x5
Logical instants of Y 0 1 2 3

Z = current Y x0 x1 x1 x3 x3 x5
Logical instants of Z 0 1 2 3 4 5

Base clock

C

X

when C

Y

Z

current

2.3.4 Example Reactive Program
We study an example reactive program. We consider the heater system described in Section 2.1,
and the associated code in Fig. 2.5.

Heater control is a node with two sub-nodes Thresholds and Holder (cf. 1.2).
The sampling rate of the inputs emergency and temperature is not the same. We choose
to sample the temperature 10 times slower than the emergency button. First, we create the flow
slowClock, true one period of the base clock out of ten. This flow is a sub-clock of the base
clock since its rythm is on the base clock.
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node thresholds(temp: int)
returns (tempH, tempL: bool)

let
tempH = (temp > 25);
tempL = (temp < 15);

tel

-- executed on fastClock
node system(emergency: bool; temperature: int)

returns (command: bool)
var

cnt: int;
slowClock: bool;
(tmpH, tmpL: bool) when slowClock;
heaterOn, heaterOff, stop: bool;

let
cnt = 0 -> (pre(cnt) + 1) mod 10;
slowClock = (cnt = 0);
(tmpH, tmpL) = thresholds(temperature when slowClock);
stop = holder(emergency, false);
heaterOn = current(tmpL) and not stop;
heaterOff = current(tmpH) or stop;
command = holder(heaterOn, heaterOff);

tel

Figure 2.5: The control part of the example heating system. TempH indicates whether the
temperature is above the high threshold and tempL when the temperature is below the low
threshold. The temperature is sampled at a slow rate ( 1

10 of the fast rate), whereas the emergency
signal is sampled at a faster rate. Command triggers the heater. An emergency signal can stop
the heater at any time, once triggered, this signal stops the heater forever. Code of holder is
in Fig. 2.4.

In Lustre, the clock of a node is defined by the clock of its inputs. The input of the node
thresholds is temperature when slowClock, hence, this node is enabled on the
clock slowClock and the outputs tempH and tempL are also on slowClock. Stop,
emergency and command are on the base clock.

Now we give an example of how current converts the rhythm of an expression from a
sub-clock to the base clock. The expressions to compute heaterOn and heaterOff are on
the base clock whereas tmpL and tmpH are on slowClock. Hence, we need the operator
current to adapt tmpL and tmpH on the base clock.

2.3.5 Multiperiodic Systems and Communication-by-sampling
We introduce the notion of multiperiodic systems. In the heater control system example (cf.
Fig. 1.1), the emergency button must be sampled fast enough (e.g. less than 100 ms of period)
to catch the signal of the button pressed briefly, whereas the temperature can be sampled with
a period of several seconds. We can choose to split the program into several parts running at
different speeds (we call them tasks). This kind of system is called multiperiodic [2].

10



Figure 2.6: Generic example of a multiperiodic system composed of a node A and a node B
working at different speeds (Period A, and Period B). We implement each node with a task.

Task A

0ms 15ms 30ms 45ms 60ms

Task B

Schedule C
(Static-scheduling) A A A A AB B

Figure 2.7: The vertical arrows represent the activations of the two tasks. Task A has a period
pA = 15 ms, Task B has a period pB = 45 ms. The rectangles are the respective WCETs of
the tasks. The lines Task A and Task B show how the tasks could execute in full parallelism.
Schedule C is a static schedule of the two tasks on one processor. We execute the whole reactive
program at the fastest rate (period of A). B is executed every 3 periods of A. It implies strong
timing constraints: WCETA + WCETB < pA.

Considering a generic example depicted by Fig. 2.6. B is reading values from A. If task A is
faster than B, it produces values more often than B can read. Communication-by-sampling is a
choice for the semantics of the communication: we decide that values can be lost. B “samples”
the output of A.

2.4 From Simple-loop to Real-Time OS Implementations

2.4.1 Simple-loop Implementation
The purpose of synchronous languages is to ease the development. There exists a Lustre com-
piler able to generate simple loop code [10] as in Fig. 2.1.

Fig. 2.2, shows the execution of a reactive program. The execution time of a synchronous
program grows with the complexity of the program. The inputs are read at the beginning of
the activation, and written at the end. Verifying whether a reactive program satisfies the time
specification (for instance the input-output latency) is done by computation of the Worst-Case
Execution Time (WCET) of the body of the loop.

The first attempt to implement a multiperiodic reactive program is to schedule its tasks
statically to execute the whole program at the speed of the fastest rate (e.g. sampling the
temperature at the same speed as the button). Fig. 2.7 gives an example where we execute the
task A at every activation of a fast clock and a task B every three activations of A. But, there is
a strong timing limitation since the WCET of the two tasks must fit into the fast period and it
hides some form of communication-by-sampling.
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Task A A

0ms

A

10ms

A

20ms

A

30ms

A

40ms

A

50ms

Task B B B

Scheduling A A A A A AB0 B1 B2 B3

Figure 2.8: The vertical arrows represent the activations of the two tasks. The rectangles are
their respective WCETs. This figure shows an example of static scheduling. The lines Task
A and Task B show how the tasks could execute in full parallelism. Line Scheduling is an
improved static schedule of the two tasks on one processor. Task B is split into 4 parts. At each
activation, we execute A and a part of B. The constraint is that Task B must complete before its
next activation.

How to use this property to fit larger systems on one processor?

2.4.2 Improved Static-scheduling
An improved scheduling could be to split the slowest task into several chunks. Imagine you
could split B into B0, B1, B2, B3 of approximately equal execution times. A solution with two
tasks appears in Fig. 2.8. Task A has a period of 2, and Task B has a period of 8. The WCET
of A is 0.5 whereas the WCET of B is 4. Task B is split into 4 sub-parts of WCET 1. The
schedule has a WCET of 1.5. It is composed of an activation of A and a part of B. For the
implementation, we can use a counter to know which part of B to execute at each activation of
AB.

This solution makes the execution of multiperiodic program possible even though the entire
program cannot be executed at the fastest rate. Yet, it leads to several problems. The first is,
splitting a task into several parts with a precise WCET can be difficult. Second, if a period or a
program changes, we need to reconsider the splitting.
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Task A A

0ms

A

10ms

A

20ms

A

30ms

A

40ms

A

50ms

Task B B B

Scheduling A A A A A AB0 B1 B2

Figure 2.9: Dynamic scheduling of the tasks A and B. A high priority is given to the fastest
task (Task A).

Task B2 (freshest)
? v0 v1 v1 v1 v2

Task A2
v0 v1 v2 v3

Task B1 (freshest)
? v0 v0 v1 v2 v2

Task A1
v0 v1 v2 v3

0ms 15ms 30ms 45ms

0ms 10ms 20ms 30ms 40ms 50ms

Figure 2.10: For each task, we represent the actual execution time of the tasks (≤ WCET).
The tasks read values at the activation and write at the end of computation. For two different
executions of Task A and Task B, the sequence of value read by Task B is not the same. In the
first case Task B1 reads the values v0,v0,v1,v2,v2 from A1, whereas in the second, Task B2 reads
v0,v1,v1,v1,v2. This shows that the “freshest value” semantics depends on the computation time,
and thus is not deterministic.

2.4.3 Dynamic Scheduling
We can use a scheduler (and hence a Real-Time OS) with preemption to activate the tasks. If
we give a greater priority to high-rate tasks and a low priority to low-rate task, we obtain a
result similar to the static-scheduling except the splitting is done dynamically (cf. Fig. 2.9),
according to the actual execution times. This solution has been formalized by Caspi et al [3].

Yet, having several dynamically-scheduled tasks raises an important question. We know, the
semantics of the data-exchanges between the nodes are defined by the synchronous program.
Furthermore, the semantics of a synchronous program is deterministic (the outputs depends
only on the inputs). How to preserve the semantics with a dynamic scheduler?

The first data-exchange policy we can think of is the “freshest value”. It is an attempt to
implement the communication-by-sampling semantics. But this policy does not guarantee the
determinism since the values depend on the actual execution time of the tasks [3]. This issue is
presented in Fig. 2.10.
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Caspi et al. [3] present the Dynamic Buffering Protocol (DBP). The purpose is to pre-
serve the original semantics of the synchronous program even though the tasks are dynamically
scheduled. The solution is based on shared buffers. The result is, for any execution time and any
scheduler, the implementation always preserve the behavior of the simple-loop implementation
of the synchronous program.
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The Kalray Multi-Purpose Processor Array
Architecture (MPPA)

3.1 Overview

The Kalray Multi-Purpose Processor Array 256 (MPPA-256) Andey is a low power processor
intended for high performance [6]. As shown in Fig. 3.1, it is composed of 16 clusters and 4
Input/Output (I/O) clusters. The clusters are connected through two networks-on-chip (NoC)
with a 2D torus topology (cf. 3.3): the Data-NoC (D-NoC) is designed to maximise throughput,
and the Control-NoC (C-NoC) is designed to minimize latency. Section 3.2 gives more details
about the NoC.

(Figure from [6])

Figure 3.1: Overview of the MPPA-256’s
architecture. 16 clusters and four I/O clus-
ters. The Ethernet (Eth) interfaces allows
communication through the network. The
MPPA can be used as an accelerator card
connected to a host with the PCIs bus.

(Figure from [6])

Figure 3.2: Overview of a cluster of the
MPPA-256. A cluster is composed of
16 Processing Elements (PE) and one Re-
source Manager. Each shared memory is
shared between 16 PEs. The Network In-
terface connects the cluster to the NoC.

Each cluster is composed of 16 processing elements (PEs) plus one resource manager (RM)
and a shared memory of 2 Mbytes (cf. Fig. 3.1). The RM is designed for NoC communications.
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As shown in Fig. 3.1, the Kalray’s MPPA-256 is equipped of two Ethernet controllers for
network applications and two PCI buses to configure the processor or to use it as an accelerator
card.

The cores have a VLIW (Very Long Instruction Word) architecture allowing instruction-
level parallelism. Hence, the MPPA provides three levels of parallelism: the instruction (ISA)
level, the PE level (communicating through shared memory), and the cluster level (communi-
cating through networks on chip).

A typical usage of the MPPA is to load a piece of program into an I/O-Cluster. This program
spawns and launches processes on the clusters (often in the Resource Manager of the clusters),
then these processes can create threads on each PE.

The inter-thread communication is done through the shared memory, and the inter-process
communication through the NoC. The computed data can be forwarded to the outside (host
processor, network), using the PCI buses of the I/O clusters or the Ethernet cards.

3.2 Network-on-Chip

Each cluster owns a router which is connected to four other routers (North, South, West, East)
as depicted in Fig. 3.3. A local link connects the cluster to its router. There are two independent
networks, the Data-NoC and the Control-NoC, with the same topology.

To go from one cluster to another, the data passes through two or more routers. When two
clusters are sending data, if the routes share at least one router, there is a risk of congestion.
Each router has one output buffer per direction. The packets are split into 32-bits flits (unit of
transmission). A router can transmit a flit in one cycle on a link. Hence, if we do not control
the flow, the buffer could become full and could lose packets.

Flow control The NoC has been designed to be fair and to guarantee latency and through-
put [7]. The hardware offers a budget-based flow control mechanism. The principle is to limit
the bandwidth at the source (in the DMA of the clusters, see Fig 3.3). The flow control guar-
antees the latency and throughput of the communication with a correct configuration. Hence,
if we set all the limits to their maximum, the service is not guaranteed.

In each cluster, we must configure a budget b and a window w. The DMA sends a packet
only if during the last w cycles of transmission, it has sent less than b flits. Consequently, a
cluster cannot send data when the budget is spent. The values w and b must be configured
before the first transmission. If the values are changed during the communication, the behavior
is undefined.

Fig. 3.4 shows this mechanism for two clusters. Both cluster have a budget of 10 flits during
a window of 20 cycles such as for any time window of 20 cycles, each cluster does not send
more than 10 flits.

The flow control mechanism is essential to ensure guaranteed service and to bound the
transmission time. These properties are not available in all many-core architectures. For exam-
ple, the NoC of the Nostrum is “best effort” [7] i.e. the packets are send as soon as possible,
without control.
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Figure 3.3: The MPPA-256’s NoC topology (figure from [11]). Each cluster (C0 to C15),
and each RM (RM0 to RM3) of the I/O Clusters owns a router and a Direct Memory Access
(DMA) to write the packets in the memory. It has two full-duplex links with each neighbor
(North, South, East, West): one for data, one for control.
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Figure 3.4: Example of flow control mechanism configured on two nodes. The x-axis is the
number of cycles, the y-axis is the cumulative number of 32-bits flits sent. The two nodes have
a budget b = 10 cycles in a sliding window w = 20 flits. Hence, they cannot send more than
10 flits in a sliding window of 20. For Node 1, A represents the window from t=10 to t=30.
At t=30, Node 1 emission is blocked (it already sent 10 flits in the last 20 cycles). Node 2 is
blocked before the end of the window C. The window B, shows that Node 2 does not use all
the budget: it could send 5 flits more.

Worm-hole buffering policy The policy of the NoC is worm-hole. It means a router does
not store the packets. It decides the appropriate direction, for retransmission or delivery, once
it receives the header. If the outgoing link is free the transmission can start even though the
packet has not been fully received yet.

The MPPA provides a communication mechanism based on the definition of a route. A
route is a list of directions (North, South, East, West) corresponding to the path between a
source cluster and a destination. When a packet enters the router of a cluster, the header of the
packet indicates the direction to take next.

Example of route from C2 to C11: East, North, South (cf. Fig. 3.3). This route passes
through the routers R2, R224, R3 and R11.

In the case of a multicast communication, in addition to each direction, an extra bit indicates
if the packet is intended for the current cluster. Thus, the router knows if it must forward a copy
of the data on the local link (Wires L on Fig. 3.3).

3.3 Memory

The MPPA has three levels of memory: the registers (and the caches) of the PEs, the 2-Mbytes
shared memory in each cluster (for 16 PEs), and a Double Data Rate (DDR) memory provided
with the board.
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The shared memory can be directly accessed from a PE. There is a writing buffer and
a cache, but there is no cache coherency mechanism to allow predictable memory accesses
latency [6]. Furthermore, the caches of the processor have the LRU cache replacement policy.
This policy is predictable and hence, allows to compute a tight bound of the memory access
times [8].

To minimize contention the shared memory is composed of 16 banks of 128 bytes each.
Hence, it avoids interference between two PEs writing in two different banks.

For the Data-NoC (D-NoC) communications, the new packets are received in the shared
memory through a DMA. The incoming buffer is specified when the DMA is configured (before
the first reception). For the Control-NoC (C-NoC), the data (limited to 64 bits) is received in a
special register. To improve the NoC latency, DMA is prioritized over other memory accesses.
Namely, when a packet arrives, it is directly written in memory and can be in conflict with
another concurrent access in the same bank (access in other bank is not impacted).

For outgoing packets on the C-NoC, register contains the data, so there is no conflict pos-
sible with the memory accesses. For the D-NoC, the DMA reads a (configurable) buffer in the
shared memory, and it is not prioritized over the other accesses.

3.4 Individual Cores

Timing anomalies are contra-intuitive influence of the local execution time on the global
execution time [12].

The cores of the Kalray’s MPPA are designed to avoid timing anomalies. In particular
the LRU replacement policy is chosen for the caches (allowing to statically know the memory
access latency [8]).

Concerning the pipeline, there is no branch prediction (except for loops, but the penalty
is constant [6]), and no out-of-order execution. The VLIW allows to take advantage of the
instruction level parallelism in a static way since the scheduling of instructions is done by the
compiler [6].

Mesosynchronous Two clocks are mesosynchronous when they have the same period, but
there is a constant phase between them.

Each core is featured of two 32-bits timers, that can be chained to have one 64-bits timer.
All the timers of the MPPA are mesosynchronous [6].

3.5 Using the Kalray’s MPPA for Reactive Systems

Bounding the execution time of a part of a program is a required condition to execute reactive
programs on hardware. We call Worst-Case Execution Time (WCET) the upperbound of the
execution time. Most of the recent processors have timing anomaly [12] making difficult the
computation of an accurate WCET (definition in Section 3.4). In general, all operations of the
program must be bounded. Hence, on a many-core architecture, the communications time must
also be bounded. We call this bound Worst-Case Transmission Time (WCTxT).
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The architecture of the Kalray’s MPPA has specificities allowing to statically compute an
accurate WCET on each core. The first is there is no branch prediction and complex pipeline.
When present, these functionalities lead to timing anomaly. Second, the VLIW instruction
parallelism is fully managed at compile time and can be disabled. Third, there is no cache
coherency protocol and the cache replacement policy is the LRU one. Furthermore, the shared
memory is parted in banks avoiding interference if each core accesses its own bank. For NoC
communications, a flow control mechanism makes the latency of the packets boundable and
the throughput guaranteed.

All these characteristics make the Kalray’s MPPA a good candidate for the deterministic
implementation of reactive systems.
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Problem statement

4.1 Running Synchronous Programs on Many-core
Architectures

Implementing a synchronous program to take advantage of a many-core architecture raises
several problems. We describe them in the next sections.

4.1.1 How to Map the Nodes on a Many-core Architecture?
Fig. 4.1-(1) shows an example of system specifications. It gives the sampling rates for the in-
puts, and the refresh rates for the outputs. Another information is the input-output latency. This
information strongly depends on the environment and cannot be changed. From this specifica-
tion one can deduce the activation period of each node, as shown in Fig. 4.1-(2). We consider
the periods as a specification to take into account for mapping of the nodes.

Mapping the nodes on a many-core architecture depends both on the high level description
(the activation periods, the wires between the nodes) and on the architecture. The many-core
architecture offers several levels of parallelism (instruction-level, core-level, cluster-level). To
solve this problem, we have to investigate all these possibilities to find a placement under the
constraints of the high level description. Our work does not deal with the problem of placement.
We consider that the mapping of the nodes on the processor is given (either manually or by
another tool).

We investigate the communication through the NoC because it is required to map a reactive
program on a many-core architecture. Using the NoC communications in a reactive system is
also something new we want to investigate.

4.1.2 How to Define a Deterministic Semantics of Data Exchanges
Between the Nodes?
We need to give deterministic semantics to the communication between the nodes. Namely,
we need to find the data-exchanges semantics we can preserve when we map a program onto
the many-core architecture. For instance, we showed in Section 2.4.3 that the “freshest value”
data-exchange implementation is not deterministic. Hence, we need to find the appropriate
semantics. We define the problem in Section 4.2.
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Figure 4.1: Implementation steps of a reactive program on a many-core architecture. There
are three steps: the first is given by the specifications of the system. Each input and output
has a sampling rate (or a refresh rate for the outputs). The input-output latency of the pairs of
input-out is also given. The second step is to deduce, from the first step, the activation period
of each node of the system. The third step corresponds to the mapping on the architecture.
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Figure 4.2: The rectangles represent the actual computation time of each task. At the end of
each computation, a new value is available. We can choose to send some to the slow task.
Values from w0 to w3 are available before the activation r1 of the slow task. Value w4 is
available after r1. If we choose this value, the slow task has to wait.

4.1.3 Previous work
The previous work by Hanan Kanso [9] is an implementation of a synchronous program on
the Kalray MPPA. It shows that parallelizing a synchronous program on the Kalray MPPA
is possible. Each node is mapped on a Resource Manager (cf. Section 3) and communicates
through the Data-NoC. The solution works only for nodes with harmonic activation periods.
Moreover, it uses the POSIX API of the MPPA which gives less control on the system than the
low-level API.

4.2 Problem Definition

Let us consider a reactive program composed of several nodes. The activation periods (which
not be harmonic) of the nodes and the mapping on the clusters of the Kalray MPPA are given.
We know the WCET of each node of the program. With these conditions, our contribution is to
answer several questions:

1. How to define deterministic semantics of communication between these nodes on the
high level description?

2. How to preserve the semantics of the high level description in the many-core implemen-
tation?

4.2.1 Defining a Deterministic Semantics of Communication
We need to define the semantics of the data-exchanges. For instance in Fig. 4.1-(2), the wires
mean that N3 generates values and N4 needs these values, but nothing defines precisely when.
We need to define the relation between the inputs and the outputs of the nodes. Example Fig. 4.2
shows, for two tasks, the values we can choose to send from a task to another.

The semantics needs to be deterministic because determinism of a system is a condition to
allow the verification of the correctness of the implementation by comparing the implemen-
tation with the model. The example of “freshest value” of Section 2.4.3, shows that some
data-exchanges implementations are not deterministic.
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Figure 4.3: The unit-delay semantics connecting two nodes working on different clocks.

-- "current" with an initialization value
node generic_current<<type ty>>(c: bool; v: ty; (x: ty) when c)

returns (o: ty);
var

oncec: bool;
let

oncec = c or (false -> pre oncec);
o = if not oncec then v else current(x);

tel

node generic_UnitDelay<<type ty>>
(clockA,clockB:bool; (input:ty) when clockA; val:ty)

returns ((output:ty) when clockB);
var

currOutput: ty;
let

currOutput = generic_current<<ty>>
(clockA, val,(val when clockA) -> pre input);

output = currOutput when clockB;
tel

node UnitDelay = generic_UnitDelay<<int>>;

Figure 4.4: Lustre model of the unit-delay semantics.

Unit-delay semantics We consider a node A generating a flow of values on a clock A. Node
B reads one value per activation of a clock B. The read value is the previous value in the
output flow of A i.e., the value generated by the previous activation of A when B reads. It is
expressible with a current and a pre operator in Lustre (e.g., Y = current pre X).
The Lustre code of the UnitDelay node is given in Fig. 4.4. The following table gives the
behavior of the unit-delay semantics:

Base clock 1 1 1 1 1 1 1 1 1 1 1
Clock of input 1 0 1 0 1 0 1 0 1 0 1

Instants of input 1 2 3 4 5 6
Input v0 v1 v2 v3 v4 v5

Clock output 1 0 0 1 0 0 1 0 0 1 0
UnitDelay(A) v0 v2 v3

Instants of output 1 2 3 4

Fig. 4.6 shows the Lustre code of a four nodes connected with the unit-delay semantics.
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Figure 4.5: The rectangles represent the actual computation time of each task. At the end of
each computation of the fast task, a value is sent through the NoC. Due to the speed of the NoC,
values w2 and w3 may not be available at activation r1 of the slow task even though they were
sent before this instant.

4.2.2 Preserving the Semantics of the High Level Description in
the Many-core Implementation
The time of communications through the NoC is not negligible, thus, it is not always compat-
ible with the strong timing constraint required by the instantaneous communication. Fig. 4.5
shows the consequence of the NoC on available values. For example, with the instantaneous
communications (we read value w4 at activation r1), the tasks cannot start on their activation
because the input values are not available at activation.

In our solution, we choose the unit-delay semantics i.e. with at least one writer period of
delay (values w3, w2, w1 or w0). On this figure, neither w3 (one unit delay), nor w2 (two unit
delays) are available, hence we can choose w1 (three unit delays) or w0 (four unit delays).

The problem is to implement the unit-delay semantics on a many-core architecture. As the
NoC introduces communication latencies, we have to verify whether the unit-delay semantics
holds when a program is implemented on the actual hardware.
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node Connection(useless: bool) returns (currX, currY, currRes: int)
var

seq: int;
init, highC, lowC: bool;
(N1, N3: int) when highC;
(N2, N4: int) when lowC;
x: int when highC;
(y, z, res: int) when lowC;

let
init = true -> false;

-- Define clocks
seq = 0 -> ((pre seq + 1) mod 6);
highC = (seq mod 2 = 0);
lowC = (seq mod 3 = 0);

N1 = Node1(init when highC);
N2 = Node2(init when lowC);
N3 = Node3(init when highC, x);
N4 = Node4(init when lowC, z, y);

x = UnitDelay(highC, highC, N1, 0);
y = UnitDelay(lowC, lowC, N2, 0);
z = UnitDelay(highC, lowC, N3, 0);
res = UnitDelay(lowC, lowC, N4, 0);

-- To display wires.
currX = generic_current<<int>>(highC, -1, x);
currY = generic_current<<int>>(lowC, -1, y);
currRes = generic_current<<int>>(lowC, -1, res);

tel

Figure 4.6: Example Lustre node connecting four nodes. Node 2 and 4 are activated on clock
slowC, and Node 1 and 3 are activated on highC. The four nodes are connected with the unit-
delay semantics. For instance, the wire z connects the output of N3 on clock highC with N4
on clock lowC. Nodes generic current and UnitDelay are given in Fig. 4.4. Complete
code is given in Appendix A.
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The unit-delay semantics: deterministic and
preservable data-exchanges between nodes

We choose the unit-delay semantics for the data-exchanges. To preserve the semantics on
the many-core architecture, we statically compute patterns defining for each node, when it
sends, and when it receives the values.

5.1 Definition of a Task

The reactive program is split into tasks that are mapped on the architecture.

Let Ti be a strictly periodic task, namely we consider its deadline equal to its period.

A task Ti is defined by (pi,WCETi). With pi a period and WCETi the worst case execution
time of the task. We always assume pi ≥WCETi. ri,n = n∗ pi represents the nth activation of
the task Ti. The first activation of the task Ti is ri,0.

Oi,n represents the output computed at ri,n by the task.

5.2 Communication Pattern

The purpose of this section is to reproduce the exact behavior of the unit-delay semantics using
communications on the NoC. Fig. 5.1 gives an example of two tasks communicating at different
speeds with the unit-delay semantics.

We consider two tasks with different periods (both periods are defined on the base clock of
the system). The code of a task is executed at each activation, hence on the period of this task.
At each activation, the code must decide if it communicates (in other case, the reader keeps
the old value, and the writer does not send the value). When two tasks are communicating, the
fastest task is responsible for the communication:

• If the fastest reads, and the slowest writes, the fastest reads only sometimes but the slow-
est writes every time.

• If the fastest writes, and the slowest reads, the fastest writes only sometimes but the
slowest reads every time.
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UnitDelay(N3)
N4 (Reader)
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Figure 5.1: At each activation, the ’1’ on the arrow indicates if the task must communicate
(write for N3, read for N4). N3 writes at each activation. According to the unit-delay semantics,
N4 needs to read only at the 3rd, 4th and 6th activations. Hence, the pattern begin with ’0’s. At
each ’0’, the previous value is kept (or the initialization value for the first activation).
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UnitDelay(Writer)
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Figure 5.2: At each activation, the ’1’ on the arrow indicates when the task must communicate.
In this example, we demonstrate that sometimes a slow reader needs an initialization, namely,
Reader does not read in the first activation because the v0 is not yet available. Hence, the eader
must use an initialization value for the first activation, and, due to the initialization, it need a
pattern.

In both cases, we can justify it because, for two communicating tasks, there is always one
activation of the fast task between two activations of the slow one. Hence, we are sure that: the
fast reader has consumed the value, or the fast writer has produced a value. Note that, for the
slow reader, an initialization is needed in most of the cases.

In a pair of communicating tasks, we need a pattern for the slower and a pattern for the
reader indicating when these tasks communicate. As shown in Fig. 5.1, the fast task does not
read at every activation and sometimes keeps a value for several activations (communication-
by-sampling). This figure also gives an example pattern. Furthermore, in Fig. 5.2, we show
that the slow task also needs an initialization and hence needs a pattern.

Pattern(k,n) indicates, for the activation rk,n, if the task Tk must communicate, i.e., depend-
ing of the nature of the task, if it must read or write. Tk must communicate at activation rk,n iff
Pattern(k,n) is 1.

The patterns are ultimately periodic as defined in [4]. A pattern is a word on the alphabet
{0,1} of the form u(v). It is composed of an initialization u and a periodic part v (the periodic
part is repeated infinitely). We give the grammar of a pattern:

u ::= b∗
v ::= b.b∗
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b ::= 0 | 1

Example, the two patterns of Fig. 5.2 are: (101) for the writer 0(1) for the reader.
The size of the periodic part v depends on the least common multiple of the two periods

(hence, we consider the periods are rationals numbers):

sizePeriodici = |vi|=
lcm(pi, p j)

pi

5.3 Computing Communication Patterns

Input: The periods pw and pr, and the number of unit delays k
1 function writerActivation(r j,n,k) =

⌈
r j,n−(r j,n mod pi)−k∗pi

pi

⌉
2 function sizeInit(k) =

⌈
k∗pw

pr

⌉
3 sizeInitR← sizeInit(k)
4 sizePeriodicR← lcm(pw,pr)

pr

5 sizePeriodicW← lcm(pw,pr)
pw

6 array pattW [0, pw−1] of Boolean values
7 array pattR [0, sizeInitR+sizePeriodicR−1] of Boolean values
8 lastUnitDelayW← -1
9 for a ∈ [0,sizeInitR+sizePeriodicR[ do

10 unitDelayW← writerActivation(a,k)
11 if unitDelayW≥ 0 and lastUnitDelayW 6= unitDelayW then
12 pattR [unitDelayW ]← 1
13 pattW [a ]← 1
14 end
15 lastUnitDelayW← unitDelayW
16 end
17 return (pattW, pattR)

Algorithm 1: This algorithm computes the communication patterns reproducing the behavior
of the unit-delay semantics. It produces two patterns one for the reader and one the writer.
The first sizeInitR elements of pattR is the initialization part, the rest is the periodic part.
PattW does not contain initialization.

For a pair of communicating tasks (a writer Tw, and a reader Tr), we compute two patterns:
pattW et pattR. The principle of this algorithm is:

• For each activation of Tr, it computes the corresponding activation of Tw according to
the unit-delay semantics using the function writerActivation. Namely, in Fig. 5.3, at the
second activation, Reader gets v0. The corresponding activation is the first activation of
Writer.

• In the writer pattern pattW, it marks the corresponding activation (Tw must send the
value). (L12)

• In the reader pattern pattR, we also mark the activation, but only if it is the first time the
reader can read the value (because Tw writes the value only one time). (L13)
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Figure 5.3: The pattern of Reader is composed of two parts: an initialization part (Init), and
a Periodic part. The pattern of the Writer is only composed of a periodic part. The algorithm
computes the Writer and the Reader patterns by evaluating, for each activation of Reader, which
value of the Writer is needed (according to the unit delay semantics).

For the activation r j,n of a reader Tj, the function writerActivation gives the activation of
the writer Ti when the value is produced. k is the number of unit delays.

writerActivation(r j,n,k) =
⌈

r j,n− (r j,n mod pi)− k ∗ pi

pi

⌉
The complete algorithm is given in Algo. 1.

5.3.1 Initialization of the Reader
In Section 5.2, we showed that sometimes the reader needs an initialization because during its
first activations, no value of the writer has been received yet. For instance, in Fig. 5.3, v0 is
available at the second activation of Tr, hence, the initialization part (Init on the figure) lasts
one period of Reader.

We define the initialization as the number of periods of the reader needed to have the first
value of the writer according to the unit-delay semantics. Function sizeInit(k) gives the size of
the initialization of the reader Tj.

sizeInit(k) = |u j|= min{n|writerActivation(r j,n,k) = 0}=
⌈

k ∗ pi

p j

⌉
For a unit delay of k, the value is read at least k periods of the writer after. Hence, we compute
the first activation of the reader after these k periods.

5.4 Verifying the Availability of Values
The constraint of our solution is: the input values must be available before the activation of the
task. We need to guarantee this property even if the Worst-Case Transmission Time (WCTxT)
is high. Fig. 5.4 depicts a case when the WCTxT is too high. Reader cannot start since the
input v1 is not available at activation.
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Figure 5.4: We represent the WCET of the tasks Writer (pw = 3, WCETw = 2) and Reader
(pr = 2, WCETw = 1) connected with one unit delay. The line NoC represents the transmission
through the NoC, the rectangles are the Worst-Case Transmission Time (WCTxT = 2). The 4th
activation of Reader needs v1 but due to the high WCTxT it arrives after the activation.
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Figure 5.5: In this example the WCET of 1.5 and the WCTxT of 1.5 both fit into the period of
the writer (pw = 3). In this case, the communication is guaranteed to work.

We first consider a simple case, when we include the transmission time in the period of the
writer. Thereafter, we consider the general case.

5.4.1 Simple case pw >WCETw +WCT xT
To simplify the problem, we consider that the period of a task Tw is enough to compute and
send the data in one period. Namely: pw >WCETw +WCT xT .

Fig. 5.5 shows a case when the WCTxT and the WCET both fit into the period. In this
case, Reader is guaranteed to receive the data before his activation. The worst case is when
Writer sends v1 because Reader needs it exactly pw after. As pw > WCETw +WCT xT , Tr is
guaranteed to receive the value. As a consequence, one unit delay is always sufficient when
pw >WCETw +WCT xT .
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Figure 5.6: This figure shows the same example as Fig. 5.4 with a two unit-delays semantics.
With this semantics the data is always available.

5.4.2 General case pw >WCETw
The general case is useful if we cannot accelerate the computation to make WCETw+WCT xT ≤
pw. As a consequence, we sometimes need several unit delays to guarantee the availability of
the data before the reader needs it.

In Fig. 5.4, the input data is not always available before the activation. If we change to
the two-unit-delay semantics, it works. The same nodes with this semantics are represented in
Fig. 5.6.

The function minUnitDelay gives, for a Writer and the WCTxT, the minimal number of
unit delays. We can see the number of unit delay as the number of periods of the writer able to
compensate a high WCTxT.

minUnitDelay(Tw) =
⌈

WCETw +WCT xT
pw

⌉
Example, for pw = 3, WCET = 2, WCT xT = 2, the minimal number of unit delays is 2.

5.5 Communication Buffer
In example Fig. 5.7, Writer can send two values before Reader receives them, hence we need
a communication buffer. The reason is data are sent once they are produced but they are read
only when Reader needs them. In this part we give an algorithm to compute the size of this
buffer.

5.6 Buffer Size
The n-synchronous theory [4] defines the adaptability that tells whether a communication buffer
can be bounded. Another result of this theory allows to compute the size of this buffer.

Still, to be able to apply the n-synchronous theory, the patterns must be all expressed on
the same clock. We choose to express all the patterns on a period of gcd(pw, pr). Example,
the writer patterns (1) of period 3 becomes (100), and the reader pattern 00(110) of period 2
becomes 0000(101000) (the common period is gcd(2,3) = 1).
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First read

Figure 5.7: In this figure we represent some possible execution time and transmission time
instead of the WCET and WCTxT. At the first read, v0 and v1 have already been sent. As a
consequence, we need a buffer to receive the values.

Figure 5.8: A writer (pw = 3) of pattern 1001(001001) is sending to a reader (pr = 2) of pattern
0000(101000). The maximum buffer size is given by the maximum difference between the
number of written and the number of read values.

Adaptability (written w1<: w2) [4] The communication ensures a task never reads an empty
buffer and this buffer can be bounded. In other word, the data produced on a rhythm c1 can be
consumed on a rhythm c2 by insertion of a bounded buffer.

The unit-delay semantics ensures we read only an already produced value, hence we never
read in an empty buffer and our algorithm guarantees all the produced values are read (same
number of one in the two periodic parts) hence the buffer can be bounded. Hence, the adapt-
ability of our patterns is guaranteed.

According to the n-synchronous theory [4] the size of the buffer is the maximum difference
between the number of written data and the number of read data in the buffer (as depicted in
Fig. 5.8). We can compute this step by step. The n-synchronous theory gives the bound of this
computation:

For ultimately periodic patterns, if w1 <: w2, the maximum buffer size is met before the
period P = max(|u1|, |u2|)+ lcm(|v1|, |v2|).

Algo. 2 computes the minimal size of the buffer able achieve the communication.
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Input: pw, pr, delay and init. pattW, pattR must be expressed on lcm(pw,pr).
1 nbWrites← 0
2 NbReads← 0
3 maxBuff← 0
4 for i← 0 to init + lcm(pw, pr) do
5 if pattW[i] then nbWrites← nbWrites + 1
6 if pattR[i] then nbReads← nbReads + 1
7 maxBuff← max(maxBuff, nbWrites- nbReads)
8 end
9 return maxBuff

Algorithm 2: This algorithm computes the maximum buffer size. The patterns must be both
expressed on the clock lcm(pw,pr).
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Implementation of a multi-periodic
synchronous program on the MPPA

Extracts of the implementation presented in this section is given Appendix B.

6.1 General Principles of Implementation

Each cluster of the Kalray is composed of 16 Processing Elements (PE) and 1 Resource Man-
ager (RM). In the clusters we choose to implement the nodes on the RMs because they are
designed for NoC communication. Sending packets from the PE is possible, but requires more
configuration (the default configuration forbid access to DMA from the PEs).

To load a program on the MPPA, we load a binary containing several executables: one
executable for the I/O cluster and the executables to be loaded on the clusters. The executable
for the I/O cluster is launched first. It spawns the executable on each Resource Manager (RM).

6.2 Case Study

We give an implementation for the system example shown in Fig. 6.1. The principle of our
solution is to map each node on a cluster. The wires x, y, z and res are communication through
the NoC with the unit delay semantics. Nodes N1, N2, N3, N4, N5 are respectively mapped on
RMs 3, 4, 1, 8, 10. We use I/O Cluster 128 to spawn the executables on the Resource Managers.

Figure 6.1: Mapping of the nodes of our solution on the Resource Managers of the Kalray
MPPA. The numbers in parentheses are the cluster identifiers on the MPPA Gray squares rep-
resent wires with the unit-delay semantics. Example Lustre code for this system is given in
Fig. 4.6.
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6.3 Low Level Communications on NoC

When a node sends data to another node (for instance to implement the links x, y, z and res on
Fig. 6.1), the data is sent through the NoC. A route is embedded in the header of the packet to
indicates the direction to take, at each router, to reach the destination.

The data is received in a buffer. As a node can have several buffers (to receive several
kinds of data), we must assign them a tag. Hence, to send data to a node, we must know, the
destination cluster, the route and the tag of the buffer.

There are several steps for the implementation of the communication between the nodes:

• For each reader: create the reception buffers, and assign a reception tag to the buffer.

• For each writer: compute the route and define the packet header.

We give the implementation details in the next sections.

6.3.1 Reader side
Configuration of the reception

The configuration of the reception and the activation of the reception are done using two low-
level procedures.
_k1_dnoc_configure_rx(recvTAG, _K1_NOCV2_INCR_DATA_NOTIF,

&recvBuffer, sizeof(recvBuffer), 0);
__k1_dnoc_activate_rx_ext(IFCE, recvTAG);

RecvTAG is the reception tag. This integer is useful for the DMA to know to which buffer
the data is addressed because it is possible to receive data in several places. Hence, the writer
must also know the tag of the buffer. K1 NOCV2 INCR DATA NOTIF is used to ask the DMA
to generate an event when a new packet is received. We use it to increase security, since the
principle of our solution guarantees that data is arrived when we read them. IFCE is to select
the port, as RM only have one DMA, this value is always 0.

The configuration is done once, before the first reception.

Cache Coherency Problem

Because of the absence of hardware cache coherency mechanism in the Kalray, we cannot read
directly the received data. When a packet is received, the DMA writes in a buffer located in
the shared-memory. As there is no cache coherency mechanism and as each RM has his own
cache, reading directly the buffer leads to bad results.

Our solution is to use the ldu (load double uncached) instruction allowing to bypass the
data cache and read a 64-bits (double) value directly in the shared-memory. Kalray provides
k1 umem read64 which is an intrinsic function for this instruction.
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Read the received data

We can read the data using k1 umem read64(recvBuffer):
while (!__k1_dnoc_get_notification_counter_rx(recvTAG))

;
recvBuffer = __k1_umem_read64(recvBuffer);
__k1_dnoc_event_cntr_load_and_clear(recvTAG);

The while-loop is to ensure the data is present before we read: it waits for a new DMA
event. The k1 dnoc event cntr load and clear clear the event to be able to wait
for the next one. This is only defensive programming, namely if the execution times of the
programs match the WCET and the core are correctly synchronized, the loop is not executed
since the event is already here.

6.3.2 Writer side
Configuring the transmission consists in setting the packets header which contains the informa-
tion about the routing and the destination. We give below its contents and the values we used
in the solution.

Field Value Description
Valid true The packet is valid.
Multicast false One-to-one communication
Tag readerTag Destination tag
End of transmission true Ask the reader-DMA to generate an event for this packet
Route routeLSB 21 least significant bits of the route
Protocol 0 protocol: bit extension
Extended true enable the bit extension
Routex routeMSB most significant bits of the route

The destination tag is used address the right reception buffer. We define this tag in Sec-
tion 6.3.1. The field End of transmission indicates that the packet comes alone. In our im-
plementation, all the packets are independent. This field is used reader-side to generate a new
event for each received packet.

The field Route must contain the route the packets will take. As 21 bits are not always
sufficient, the field Protocol with the field Extended allow to extends the header to carry the rest
of the route (Routex). In this case, the size of the header is increased. The route is computed
statically using the tool k1-nocencoderoute provided by Kalray. For a list of nodes (more
details in Section 3.2), this tool gives an integer value corresponding to the route. We affect
field Route with this integer.
__k1_dnoc_configure_tx(IFCE, Tag, firstDirection, header, bandwidth);

The code above gives the configuration of the output. It must be done once, before the
first send and takes the header in parameter. Tag is a local identifier for the transmission, and
must not be confused with the destination tag. firstDirection is the first direction of the
route. It is given by Kalray’s tool k1-nocencoderoute. Bandwidth lets us specify the
maximum bandwidth (cf. Section 3.2) for flow control (0 means best effort).
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__k1_dnoc_send_data(IFCE, Tag, &o, sizeof(o), SEND_EOT);

This code sends a packet with the configuration identified by Tag. Variable o is the output
buffer. SEND EOT ask the DMA to send the packet now, without grouping several packets.

6.4 Patterns

We give the code to implement the patterns. It is the core of the unit-delay semantics reproduc-
tion. It implements the test to know if the entity must send/receive the data according to the
pattern. This code is given when both patterns are composed of an initialization and a periodic
part but we can simplify it if one part is constant.
#define PATTERN_INIT 2
#define PATTERN_PERIOD 3
#define PATT_ACTIVE(n) (1&(pattern>>(PATTERN_PERIOD+PATTERN_INIT-1-n)))
uint64_t pattern = 0b10110; // Pattern 10(110)

...
// Computation, Lustre step, etc
...
if (PATT_ACTIVE(period)) { /* Send, or receive */ }
period++;
if(period == PATTERN_INIT + PATTERN_PERIOD) { period = PATTERN_INIT; }

6.5 Implementation of the Non-Drifting Period

Each core (regardless of the kind: PE, RM or I/O Cluster) owns two 32-bits timers. A 64-bits
counter can be created by chaining them. As all the clocks of the MPPA are mesosynchronous
(cf. Section 3.4), they are decremented synchronously on each core.

We read the timer during the first instant and we compute the beginning of the next instant
(next = t + pi). After the execution we wait for the next activation:
while(readTimestamp() < next)

;

With this solution, the activation instants depend only on the first activation, hence the
periods do not drift.

We use the intrinsic k1 timer64 setup to configure the timer, and k1 timer64 get value,
to read its value.

6.6 Spawning of the Nodes on the Clusters

When we load a program on the MPPA, it is loaded on an I/O Cluster. This program is re-
sponsible to launch (or spawn) the sub-programs on the RMs. During this thesis, we only have
access to an early version of the Kalray low-level API (the version 1.3). The low-level spawn
is not available. Hence, we use the POSIX spawn in our code.
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int pid1 = mppa_spawn(clusterID, NULL, "cluster_executable1", argv, 0);

ClusterID corresponds to the identifier of the cluster where we launch the executable (1,
3, 4, 8 or 10 in Fig. 6.1). The string "cluster executable1" is the name of the cluster
program object file. The array argv is to pass arguments to main of the cluster program.

Note, it is not possible to mix low level and POSIX library on the same core. Hence, the
low level communication between a POSIX core and a low level core is not possible.

6.7 Programs Synchronization

A sequential code is responsible of spawning the executables on the MPPA (see Section 6.6)
hence all the programs do not start at the same time. According to our measurements, the order
of magnitude of the duration of one spawn is about 300 µs, hence if we spawn three programs,
we possibly have a phase of 2× 300 = 600 µs between the first and the third. The actual
duration depends on the size of the program and the network traffic.

If the writer writes too late, i.e., the first activation of the writer was after the first activation
of the reader, the reader must wait for the data. On way to solve this problem could be to
included the phase in the Worst-Case Communication Time. In the other way, i.e. the reader
reads too late, it could increase usage of the buffer.

Our synchronization solution is to use the counters of the Debug Support Unit (DSU) of
the Kalray. There is one counter per cluster. At the beginning of each program, we wait for
a specific timestamps (greater than the time it takes to spawn all the programs). According to
the documentation, as the counters are initialized through the NoC, there can be a difference of
about 25 µs between the clocks. For an actual hard real-time implementation we must exactly
synchronize the cores, but it is out of the scope of our work.
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Evaluation

If a Lustre model gives the semantics of reference for the implementation, by transitivity it
guarantees the equivalence between all the executions of the implementation. Hence, it proves
the determinism. But, to prove the correctness of the solution formally, we would need to
model the MPPA. As a master thesis is too short to carry out this modeling task, we choose to
evaluate our solution by tests. Namely, we set up a validation architecture. The purpose is to
find potential errors in the correction of the implementation or in hardware.

7.1 Reference

The reference is the Lustre implementation of the synchronous program of the case study pre-
sented in Section 6.2. The full Lustre listing for one test is given in Appendix A and Fig 7.2
gives a glimpse of the computation of each node. All the links have the unit-delay semantics.

Fig. 7.4 gives the timing diagram of a simulation of a reference synchronous program. We
compare this result to the many-core implementation.

7.2 Variation on Sources of Nondeterminism

To show that our solution is deterministic, we need to show that all the executions of the im-
plementation are equal. To improve the tests, we exagerate the sources of nondeterminism we
could meet in an actual usage.

The two sources of nondeterminism we highlight are the computation time and the trans-
mission time over the NoC. Namely, we must add in the implementation some mechanisms to
make them vary.

Figure 7.1: If the implementation is equivalent to the reference semantics (written in Lustre).
All the executions are equivalent, and hence, the execution is deterministic.
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Figure 7.2: Reference system (Lustre code in Appendix A)

7.2.1 Variation of Computation Time
The simulation of the computation time is done by adding a random duration after the actual
computation. It simulates an actual computation since the processor is actually running. One
could argue it does not simulate actual computation since it does not access memory (except
to read timestamps). But, as all the cluster memories are isolated we can consider that a more
advanced simulation is not necessary.
duration = rand()%MAX_RAND_TIME;
uint64_t initial = readTimestamp();
while(readTimestamp() - initial < duration)

;

MAX RAND TIME is the maximum time the program can wait without missing the next
activation. We obtained this value by measuring (with timestamps) the duration of the com-
putation of the nodes and the duration of the transmission (a better solution is possible if we
know the WCET of the program). MAX RAND TIME corresponds to the slack time (For a task
i, pi−WCETi−WCT xTi).

7.2.2 Variation of Transmission Time
To influence the transmission time, we create interferences on some wires. We make a cluster
sending data through a link used for the implementation (for instance through the link from R3
to R1).

We add two nodes to the implementation. The first has an integer array (some dozen of
64-bits integers). In an infinite loop, it sends this array and waits a random time. The second
ensure the array is received.

7.3 Performance Evaluation of the Low Level
Communications
In this section, we assess the performance of the low level communications. We measure the
communication latency to have the order of magnitude of the Worst-Case Transmission Time.
It is useful to know which kind of program we can distribute and which transmission periods
we can hope to have.

Between two Resource Managers, we measure the time it takes for the return trip of 64 bits
of payload. We vary the number of hops between the RMs. Fig. 7.3 gives the result. We see
that the consequence on the return trip of one more hop is about 50 ns which is low compared
to the communication time with 1 hop.
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Figure 7.3: Low-level communication performances. Measure of the ping latency in millisec-
onds. The figure gives the return trip for 64 bits of data for one, two or three hops (one hop
mean a communication between two adjacent routers).

The order of magnitude of the return trip is 1.5 µs for 3 hops. We think these figures are
promising for reactive systems implementation.

7.4 Results and Conclusion

We presented a test architecture for implementations using our method. We give an example
of test for the case study presented in Section 7.1. We compare the reference (Fig. 7.4) to the
output of the implementation (Fig. 7.5). The values are coherent with the simulation, and we
did not found bugs but we are doing more experiments. We also carried out several experiments
with several clocks.
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Figure 7.4: Simulation of the Lustre reference synchronous program of Appendix A.

...
C1: (N3) pre x=0, z=0
C10: (N5) pre res=0
C8: (N4) y=0 , pre z=0, res=0
C1: (N3) pre x=0, z=0
C10: (N5) pre res=0
C8: (N4) y=0 , pre z=0, res=0
C1: (N3) pre x=1, z=2
C1: (N3) pre x=2, z=4
C10: (N5) pre res=0
C8: (N4) y=2 , pre z=2, res=8
C1: (N3) pre x=3, z=6
C10: (N5) pre res=8
C8: (N4) y=4 , pre z=4, res=16
C1: (N3) pre x=4, z=8
C1: (N3) pre x=5, z=10
C10: (N5) pre res=16
C8: (N4) y=6 , pre z=8, res=26
C1: (N3) pre x=6, z=12
C10: (N5) pre res=26
C8: (N4) y=8 , pre z=10, res=34
C1: (N3) pre x=7, z=14
C1: (N3) pre x=8, z=16
C10: (N5) pre res=34

C8: (N4) y=10 , pre z=14, res=44
C1: (N3) pre x=9, z=18
C10: (N5) pre res=44
C8: (N4) y=12 , pre z=16, res=52
C1: (N3) pre x=10, z=20
C1: (N3) pre x=11, z=22
C10: (N5) pre res=52
C8: (N4) y=14 , pre z=20, res=62
C1: (N3) pre x=12, z=24
C10: (N5) pre res=62
C8: (N4) y=16 , pre z=22, res=70
C1: (N3) pre x=13, z=26
C1: (N3) pre x=14, z=28
C10: (N5) pre res=70
C8: (N4) y=18 , pre z=26, res=80
C1: (N3) pre x=15, z=30
C10: (N5) pre res=80
C8: (N4) y=20 , pre z=28, res=88
C1: (N3) pre x=16, z=32
C1: (N3) pre x=17, z=34
C10: (N5) pre res=88
C8: (N4) y=22 , pre z=32, res=98
C1: (N3) pre x=18, z=36
...

Figure 7.5: We give the output of the implementation. Each line is composed of the cluster
number, the executed node (in parentheses) and the contents of local values. For instance, the
value of res is given by C8. As C8 sends the value to C10, C10 displays pre res.
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Related Work

First, we present some synchronous languages. Second, we present some solutions to run
synchronous programs on multi or many-core architectures.

8.1 Specification Languages

8.1.1 Prelude
Prelude is an Architecture Description Language. The purpose is to assemble multi-periodic
nodes. These nodes are programmed in C or Lustre. The Lustre clocks are Boolean clocks that
are often hard to read for the programmer. Prelude uses strictly periodic clocks instead. They
are defined with a period and a phase. It is a sub-class of the Boolean clocks and makes the
analysis easier for the compiler (and thus it allows some optimizations).

We present an example of code (from [5]). As the syntax of Prelude is close to the syntax
of Lustre, we only talk about the differences.
imported node tau1 (i0: int, i1: int)

returns (o1: int, o2: int) wcet 5;
imported node tau2 (i0: int)

returns (o1: int ) wcet 10;
imported node tau3 (i0: int, i1: int)

returns (o1: int) wcet 20;

node sampling (i: rate (10,0))
returns (o1, o2)
var vf, vs;

let
(o1, vf)=tau1(i, (0 fby vs)*ˆ3);
vs=tau2 (vf/ˆ3) ;
o2 = tau3 ((vf˜>1/10)/ˆ6, (vs˜>1/30)/ˆ2);

tel

Nodes tau1, tau2 and tau3 are imported nodes. They can be executable code for
which we know only the inputs, the outputs and the WCET. The clock of the node sampling,
calling these nodes, has a period of 10 because its only input has a clock (10,0).

Expression vf/ˆ3 divides the clock frequency of vf by 3. Hence, if the clock of vf is
(10,0), the clock of this expression is (30,0). The converse is the operator /*.

Expression vf˜>q can be compared to a pre operator in Lustre, but it is parametrized by
q, the number of periods of delay.

The operator 0 fby vs is the initialization operator. It corresponds to 0->(pre vs)
in Lustre.

We give more details in 8.2.1.
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Figure 8.1: Principle of Cyclo-Static Data Flow: for a given node, with each input and each
output is assigned a list (output list of N2 is 1,2, one input list of N1 is 2,2,2,1). A list
give, for each activation, the number of produced or consumed data. These data act as tokens
required to activate the node. For instance, between N2 and N1, at the first step, N2 produces
one data, and N1 needs two, hence, N2 is executed two times. At the second step, N2 produces
two values, and N1 needs one. The lists are repeated infinitely, i.e., if the size of the list is N,
an element of the list gives the produced/consumed data every N activations.

8.1.2 ForeC: a Synchronous and Parallel Language
ForeC (presented in [13]) is a synchronous language designed for parallelism and multi-core
implementation. It is an extension of C. To be able to guarantee determinism, the language is
based on a safety-critical subset of C.

A step in ForeC is composed of three parts. First, the inputs are sampled. Second, each
thread computes. Third, the outputs are written. The par instruction allows to launch several
functions in parallel. The par instruction terminates when all the functions finished (join).
Each thread finishes a step when it executes the pause instruction. The next step begins when
all the threads have finished the step.

This language is interesting because it allows a thread-safe way to share variables between
the threads. A shared variable declaration comes with a combination function (written in C).
shared int total=0 combine with plus;

At the beginning of each step, each thread receives a copy of the shared variables. At the
end of the step, the local versions are combined with the function and the new value of the
shared variable is available for the next step.

8.1.3 Cyclo-Static Data Flow
Synchronous data-flow languages such as Lustre and Prelude are languages based on communication-
by-sampling. On the contrary, the Cyclo-Static Data Flow languages are designed to avoid data
loss. Each node knows the number of needed values in input and the number of generated
values for one execution. The Cyclo-Static Data Flow compute a kind of scheduling to avoid
data loss.

As depict Fig. 8.1, in CSDF [1] the constraint is specified in number of received data, and
the number of produced data. This way, the data are considered as tokens. The compiler
computes (if possible) a schedule avoiding starvation.
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8.2 Synchronous Programs on Multi- or Many-core
Architectures

8.2.1 Simulation of Distributed Synchronous Programs in Shared
Memory
SchedMCore from Mikel Cordovilla [5] is a simulator of many-core platforms for Prelude
programs. The input is a set of tasks whose we know the WCET, the execution period, the
phase and a binary file (from C, Lustre, etc). We also have the data-dependency words between
the nodes. These words can be generated from a Prelude description.

Tasks are communicating through a buffer in shared memory. For a pair of communicating
tasks, the data-dependency indicates when the writing task must write and in which cell of the
buffer, and when the reading task must read and where. Words are ultimately periodic patterns
(parenthesized part is repeated infinitely).

Example: C(Ti, v, Tj) = 0(102) corresponds to the sequence: Ti does not store, Ti stores in
cell 1, Ti does not store, Ti store in cell 2, Ti stores in 1, etc.

SchedMCore is able to compute whether the set of tasks is schedulable. SchedMCore
Runner provides a multi-threaded (POSIX) simulation in shared memory. It can be seen as a
user-level scheduler for RTOS or Linux.

8.2.2 Specific Hardware Improved for Off-line Mapping
Manel Djemal presents the Programmable DSPIN architecture [7]. It is a NoC architecture
especially designed to improve mapping of hard real-time applications on many-core architec-
tures. This architecture is designed to implement both optimal computation and communica-
tion.

The main contribution is to provide a NoC whose fair routers are replaced by programmable
routers. The routers statically route the packets according to a micro-program. The idea is
that a fair policy as a round robin between several input sources is not always desirable for
predictability. Static routing allows to precisely optimize for a specific application.

To the best of our knowledge, this architecture only exists in simulation.
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Conclusion and future work

The input of our problem is a synchronous program (multi-periodic or not) and the infor-
mation on the activation periods of the nodes. If we consider a many-core architecture whose
transmission times and computation times are bounded, and the core timers are synchronized
(mesosynchronous) then we provide a deterministic semantics for the communication between
the nodes of the synchronous program. We give the implementation of this communication se-
mantics for nodes communicating through the NoC. Finally, we implement a full multi-periodic
synchronous program on the Kalray MPPA.

Running synchronous programs on a many-core architecture is an important problem that
leads to a lot of sub-problems. Hence, for now, industrial applications are not yet possible. Our
work solves a required part of this problem which is the mapping inter-cluster communication.
Nevertheless, we provide a proof of concept showing that mapping a reactive program on a
many-core architecture is possible.

There are several directions of progress. The obvious first one is an improvement of our
solution to use more than one core per cluster. Adding a level of mapping seems essential to
fully take advantage of the many-core architecture. For the long term improvements, the aim is
to industrialize the solution. There are several possibilities: either we make the distribution on
the architecture fully automatic, or we modify a synchronous language (or create a library) to
allow the developer to take advantage of the architecture. In both cases, we need to answer the
questions: how to split the synchronous programs into parts to map on the architecture? For
instance by node, group of nodes, group of nodes of same period, etc. And, how to map these
parts on the architecture? For instance, one node per core, one group of nodes per cluster, etc.

In any case, if our solution targets the safety-critical systems in production, all the tools
used during the implementation process must be certified.
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Appendix: Reference

-- THigh
node Node1(init: bool) returns (x:int)
let

x = if init then 0 else (0->pre x) + 1;
tel

-- THigh
node Node3(init:bool; x:int) returns (x2: int) -- Writer
let

x2 = if init then 0 else 2*x;
tel

-- TLow
node Node2(init: bool) returns (y:int)
let

y = if init then 0 else (0->pre y) + 2;
tel

-- TLow
node Node4(init: bool; i, y: int) returns (res: int) -- Reader
let

res = if init then 0 else 3*y + i;
tel

-- "current" with an initialization value
node generic_current<<type ty>>(c: bool; v: ty; (x: ty) when c)

returns (o: ty);
var

oncec: bool;
let

oncec = c or (false -> pre oncec);
o = if not oncec then v else current(x);

tel

node generic_UnitDelay<<type ty>>
(clockA,clockB:bool; (input:ty) when clockA; val:ty)

returns ((output:ty) when clockB);
var

currOutput: ty;
let

currOutput = generic_current<<ty>>
(clockA, val,(val when clockA) -> pre input);

output = currOutput when clockB;
tel
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node UnitDelay = generic_UnitDelay<<int>>;

node Connection(useless: bool) returns (currX, currY, currRes: int)
var

seq: int;
init, highC, lowC: bool;
(N1, N3: int) when highC;
(N2, N4: int) when lowC;
x: int when highC;
(y, z, res: int) when lowC;

let
init = true -> false;

-- Define clocks
seq = 0 -> ((pre seq + 1) mod 6);

highC = (seq mod 2 = 0);
lowC = (seq mod 3 = 0);

N1 = Node1(init when highC);
N2 = Node2(init when lowC);
N3 = Node3(init when highC, x);
N4 = Node4(init when lowC, z, y);

x = UnitDelay(highC, highC, N1, 0);
y = UnitDelay(lowC, lowC, N2, 0);
z = UnitDelay(highC, lowC, N3, 0);
res = UnitDelay(lowC, lowC, N4, 0);

currX = generic_current<<int>>(highC, -1, x);
currY = generic_current<<int>>(lowC, -1, y);
currRes = generic_current<<int>>(lowC, -1, res);

tel
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Appendix: Implementation

/*
* Global

*/
#include <mppa.h>
#include <mppaipc.h>
#include <mppa/osconfig.h>
#include <sys/time.h>

#define PATT_ACTIVE(n) (1&(pattern>>(PATTERN_PERIOD+PATTERN_INIT - 1 - n)))
#define MASK_21BITS_LSB 0x1FFFFF
#define IFCE 0

#define TLowClock 3*40000
#define THighClock 2*40000

// -----------------------------------------------
/*
* Reader.c (Cluster 4)

*/
// Pattern: 0(1)
#define PATTERNin_INIT 1

// Pattern: 0(1)
#define PATTERN_INIT 1

int main(int argc, char *argv[])
{

initTimer();

// Input z
#define TAGz 7

uint64_t recv_2X, pre2X = 0;
__k1_dnoc_configure_rx(TAGz, _K1_NOCV2_INCR_DATA_NOTIF,

&recv_2X, sizeof(recv_2X), 0);
__k1_dnoc_activate_rx_ext(IFCE, TAGz);

// Input y
#define TAGy 13

uint32_t recv_y = 0, y = 0;
__k1_dnoc_configure_rx(TAGy, _K1_NOCV2_INCR_DATA_NOTIF,

&recv_y, sizeof(recv_y), 0);
__k1_dnoc_activate_rx_ext(IFCE, TAGy);

#define TAGres 1
#define TAGdst_res 12
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#define ROUTEres 0x80800003 // From 8 to 10
#define FIRST_DIRECTIONres 0x2

union __device_channel_header_t headerres;
headerres._.route = (uint64_t) (MASK_21BITS_LSB & ROUTEres);
headerres._.multicast = 0;
headerres._.tag = TAGdst_res;
headerres._.eot = 1;
headerres._.extended = 1; // enable route extension
headerres._.routex = (uint64_t) (ROUTEres >> 21);
headerres._.protocol = 0; // protocol: bit extension
headerres._.valid = 1;
__k1_dnoc_configure_tx(IFCE, TAGres, FIRST_DIRECTIONres,

(uint64_t) headerres.dword, 0);

uint64 end = readTimestamp();
uint32_t initialization = 0;

while (1) {

// READ INPUTS
if (initialization >= PATTERN_INIT) {

// Read packet
while (!__k1_dnoc_get_notification_counter_rx(TAGz))

;

pre2X = __k1_umem_read64(&recv_2X);
__k1_dnoc_event_cntr_load_and_clear(TAGz);

}
// Pattern 0(1)
if (initialization >= PATTERNin_INIT) {

// Read y (same speed)
while (!__k1_dnoc_get_notification_counter_rx(TAGy))

;
y = __k1_umem_read32(&recv_y);
__k1_dnoc_event_cntr_load_and_clear(TAGy);

}

// COMPUTATION
uint64_t res = 3*y + pre2X;

// Pattern (1)
__k1_dnoc_send_data(IFCE, TAGres, &res, sizeof(res), SEND_EOT);

// Pattern
if (initialization < PATTERN_INIT) {

initialization++;
}

// Period
end = end + TLowClock;
assert(readTimestamp() <= end);
us_loop_until(end);

}
}
// -----------------------------------------------
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/*
* Writer.c (Cluster 3)

*/
// Pattern: 0(1)
#define PATTERNin_INIT 1

// Pattern: 10(110)
#define PATTERN_INIT 2
#define PATTERN_PERIOD 3
uint64_t pattern = 0b10110;

int main(int argc, char *argv[])
{

initTimer();

#define TAGz 3
#define TAGdst_z 7
#define ROUTEz 0x80400037 // From 1 to 8
#define FIRST_DIRECTIONz 0x1

union __device_channel_header_t headerz;
headerz._.route = (uint64_t) (MASK_21BITS_LSB & ROUTEqueue);
headerz._.multicast = 0;
headerz._.tag = TAGdst_queue;
headerz._.eot = 1;
headerz._.extended = 1; // enable route extension
headerz._.routex = (uint64_t) (ROUTEqueue >> 21);
headerz._.protocol = 0; // protocol: bit extension
headerz._.valid = 1;
__k1_dnoc_configure_tx(IFCE, TAGz, FIRST_DIRECTIONqueue,

(uint64_t) headerz.dword, 0);

// Initialization of the incoming channel
#define TAGx 12

int64_t recv_i, i;
__k1_dnoc_configure_rx(TAGx, _K1_NOCV2_INCR_DATA_NOTIF,

&recv_i, sizeof(recv_i), 0);
__k1_dnoc_activate_rx_ext(IFCE, TAGx);

uint64_t end = readTimestamp();
uint32_t period = 0, periodIn = 0;
srand(17);
while (1) {

// READER INPUTS
// Pattern 0(1)
if (periodIn >= PATTERNin_INIT) {

// Read x
while (!__k1_dnoc_get_notification_counter_rx(TAGx))

;
i = __k1_umem_read64(&recv_i);
__k1_dnoc_event_cntr_load_and_clear(TAGx);

} else {
periodIn++;

}
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// COMPUTATION
int64_t o = 2*i;

// WRITE OUTPUTS
if (PATT_ACTIVE(period)) {

__k1_dnoc_send_data(IFCE, TAGz, &o, sizeof(o), SEND_EOT);
}
// Pattern
period++;
if(period == PATTERN_INIT + PATTERN_PERIOD) {

period = PATTERN_INIT;
}

end = end + THighClock;
assert(readTimestamp() <= end);
us_loop_until(end);

}
}
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et calcul de haute-performance Toulouse, ISAE 2012.

[6] B.D. de Dinechin, D. van Amstel, M. Poulhies, and G. Lager. Time-critical Computing
on a Single-chip Massively Parallel Processor. In Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2014, pages 1–6, March 2014.
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