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Prehistory History Linux Git Conclusion

Backups: The Old Good Time

Basic problems:
I “Oh, my disk crashed.” / “Someone has stolen my laptop!”
I “@#%!!, I’ve just deleted this important file!”
I “Oops, I introduced a bug a long time ago in my code, how can I see

how it was before?”

Historical solutions:

I Replicate:
$ cp -r ~/project/ ~/backup/

I Keep history:
$ cp -r ~/project/ ~/backup/project-2006-10-4

I Keep a description of history:
$ echo "Description of current state" > \

~/backup/project-2006-10-4/README.txt
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Backups: Improved Solutions

Replicate over multiple machines

Incremental backups: Store only the changes compared to previous
revision

I With file granularity
I With finer-grained (diff)

Many tools available:
I Standalone tools: rsync, rdiff-backup, . . .
I Versionned filesystems: VMS, Windows 2003+, cvsfs, . . .
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Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:

I Never two person work at the same time. When one person stops
working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . . )
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Hardly scales up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (Verimag) DVC 2007 < 6 / 43 >



Prehistory History Linux Git Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:

I Never two person work at the same time. When one person stops
working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . . )
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Hardly scales up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (Verimag) DVC 2007 < 6 / 43 >



Prehistory History Linux Git Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . . )
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Hardly scales up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (Verimag) DVC 2007 < 6 / 43 >



Prehistory History Linux Git Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . . )
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Hardly scales up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (Verimag) DVC 2007 < 6 / 43 >



Prehistory History Linux Git Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . . )
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Hardly scales up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (Verimag) DVC 2007 < 6 / 43 >



Prehistory History Linux Git Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . . )
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Hardly scales up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (Verimag) DVC 2007 < 6 / 43 >



Prehistory History Linux Git Conclusion

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {

printf("Hello");

return EXIT_SUCCESS;

}

Your version

#include <stdio.h>

int main () {

printf("Hello!\n");

return 0;

}

Common ancestor

#include <stdio.h>

int main () {

printf("Hello");

return 0;

}

Tools like diff3 or diff + patch can solve this

Merging relies on history!

Collaborative development linked to backups
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Merging

Space of possible revisions

(arbitrarily represented in 2D)
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Merging

Space of possible revisions

(arbitrarily represented in 2D)

Mine

YoursAncestor

Merged revision
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Revision Control System: Basic Idea

Keep track of history:
I User makes modification and use commit to keep a snapshot of the

current state,
I Meta-data (user’s name, date, descriptive message,. . . ) recorded

together with the state of the project.

Use it for merging/collaborative development.
I Each user works on its own copy,
I User explicitly “takes” modifications from others when (s)he wants.

Efficient storage (“delta-compression” ≈ incremental backups):

I At least at file level (git unpacked format),
I Usually store a concatenation of diffs or similar.

(Optional) notion of branch:

I Set of revisions recorded, but not visible in mainline,
I Can be merged into mainline when ready.
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CVS: The Centralized Approach

Configuration:
I 1 repository (contains all about the history of the project)
I 1 working copy per user (contains only the files of the project)

Basic operations:
I checkout: get a new working copy
I update: update the working copy to include new revisions in the

repository
I commit: record a new revision in the repository
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CVS: Example

Start working on a project:
$ cvs checkout project
$ cd project

Work on it:
$ vi foo.c # or whatever

See if other users did something, and if so, get their modifications:
$ cvs update

Review local changes:
$ cvs diff

Record local changes in the repository (make it visible to others):
$ cvs commit -m "Fixed incorrect Hello message"
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Commit/Update Approach

Space of possible revisions
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Commit/Update Approach

Space of possible revisions

Existing revision

New
upstream
revisions

User runs "update"

"commit" creates new revision

And so on ... !
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Conflicts

When several users change the same line of code concurrently,

Impossible for the tool to guess which version to take,

⇒ CVS leaves both versions with explicit markers, user resolves
manually.

Merge tools (Emacs’s smerge-mode, . . . ) can help.
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Conflicts: an Example

Someone added “\n”, someone else added “!”:

#include <stdio.h>

int main () {
<<<<<<< hello.c
printf("Hello\n");

=======
printf("Hello!");

>>>>>>> 1.6

return EXIT_SUCCESS;
}

Matthieu Moy (Verimag) DVC 2007 < 15 / 43 >
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CVS: Obvious Limitations

File-based system. No easy way to get back to a consistant old
revision.

No management of rename (remove + add)

Bad performances

Matthieu Moy (Verimag) DVC 2007 < 16 / 43 >
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Subversion: A Replacement for CVS

Idea of subversion: drop-in replacement for CVS (could have been
“CVS, version 2”).

I Atomic, tree-wide commits (commit is either successful or unsuccessful,
but not half),

I Rename management,
I Optimized performances, some operations available offline.

Fix the obvious limitation, but no major change/innovation

from Subversion’s FAQ:

We aren’t attempting to break new ground in SCM systems,
nor are we attempting to imitate all the best features of every
SCM system out there. We’re trying to replace CVS. [...]
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Remaining Limitations

Weak support for merging,

Most operations can not be performed offline,

No private branches

Permission management:
I Allowing anyone on earth to commit compromises the security,
I Denying someone permission to commit means this user can not use

most of the features
I Constraint acceptable for private project, but painful for Free Software

in particular.
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Decentralized Revision Control Systems

Idea: not just 1 central repository. Each user has his own repository.

By default, operations (including commit) are done on the user’s
private branch.

Users publish their repository, and request a merge.
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Linux: A Project With Huge Needs in Version Control

Not the biggest Open-Source project, but probably the most active,

≈ 10Mb of patch per month,

≈ 20,000 files, 280Mb of sources.

Many branches:
I Short life: work on a feature in a branch, request merge when ready.
I Long life: things that are unlikely to get into the official kernel before

some time (grsecurity, reiserfs4, SELinux in the past, . . . )
I Test, debug: a modification goes through several branches, is tested

there, before getting into mainline
I Distributor: Most distributions maintain a modified version of Linux

⇒ Centralized revision control is not manageable.
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A bit of history

1991: Linus Torvalds starts writing Linux, using mostly CVS,

2002: Linux adopts BitKeeper, a proprietary decentralized version
control system (available free of cost for Linux),

2002-2005: Flamewars against BitKeeper, some Free Software
alternatives appear (GNU Arch, Darcs, Monotone). None are
good enough technically.

2005: BitKeeper’s free of cost license revoked. Linux has to
migrate.

2005: Unsatisfied with the alternatives, Linus decides to start his
own project, git.

2007: Many young, but good projects for decentralized revision
control: Git, Mercurial, Bazaar, Monotone, Darcs, . . .

200?: Most likely, several projects will continue to compete, but I
guess only 2 or 3 of the best will be widely adopted.
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Git Concepts

Revision: State of a project at a point in time, with meta-information,

Repository: Set of revisions, with ancestry information,

Branch: Succession of revisions,

Working tree: The project itself (set of files, directories. . . ).
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Git basic idea

Git manages a set of objects (revision, files, directories, ...),

Each object is identified by its sha1 sum (e.g.
d188b7e3a58ce5a6a437c01e7095e79cba550d52),

Objects can point to each other.
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Starting a Project

Create a new project:
$ mkdir project (or just use an existing one)
$ cd project
$ git init

This creates a repository and a working tree in the same place.
Try “ls .git/” to see what happened.
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Create the First Revision

Add files (git won’t touch the files unless you explicitly add them):
$ git add .
or individually
$ git add file1; git add file2

Commit (record new revision):
$ git commit -m "descriptive message"
(if you don’t provide -m, an editor will be opened to let you type your
message)

Unlike most version control systems, git ask you to “git add” files
when you change them. Surprising, but indeed powerful.
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Look at Your Own Changes

Short summary: git status
$ git status # Changed but not updated:

# (use "git add <file>..." to update what will be committed)

#

# modified: bar.c

#

# Untracked files:

# (use "git add <file>..." to include in what will be committed)

#

# foo.c
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Look at Your Own Changes

Short summary: git status

Complete diff: git diff
$ git diff HEAD

diff --git a/foo.c b/foo.c

index d9bd708..a026613 100644

--- a/foo.c

+++ b/foo.c

@@ -1,5 +1,5 @@

#include <stdio.h>

int main() {
- printf ("hello");

+ printf ("hello\n");

}
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Look at the History

See the past revisions:

$ git log

commit 1d0ddc98025de7b159ac319a6e3d691fe5cf4c03

Author: Matthieu Moy <Matthieu.Moy@imag.fr>

Date: Tue Oct 9 15:35:39 2007 +0200

Fixed a bug

commit bf45d2100fe662b2afb8e48eb40d4bf5a7dbc2fe

Author: Matthieu Moy <Matthieu.Moy@imag.fr>

Date: Tue Oct 9 15:35:24 2007 +0200

initial revision
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Publish your repository

Up to now, your repository is just on your disk, no one else sees it,

Publish you branch:
$ git push ssh://some-host.com/project-upstream (git needs
to be installed on the remote host, but no daemon needed)

Other people can now clone it:
$ git clone http://some-host.com/project-upstream
(assuming the sftp location and http location are the same on
some-host.com).
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Working on an Existing Project

Clone the remote repository:
$ git clone http://some-host.com/project
$ cd project

Work on it!

Commit your changes:
$ git commit -m "implemented something awesome"

Publish it and request a merge:
$ git push ssh://another-host.com/your/project
$ mail -s "please, merge ..."
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Merging

Two use cases:
I As a contributor, you started working on a feature in your own

repository, but you want to follow upstream development.
I Your feature is completed, upstream wants to merge it.

Symetry in both use-cases,

Successive merge possible,

Git keeps track of merge history. It knows what you miss, and what
has already been merged.
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Merging

Merge the changes into the local repository:

$ git pull ../bar/

Merge Commit: Unless you’re merging a branch which you are a
direct ancestor of, git will create a new commit, corresponding to the
merge.
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Merging

Space of possible revisions

Resulting revision history is a DAG
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Other Features of Interest

Git index: A staging area to prepare your commits. Probably the most
powerful way to make partial commits.

Tags: Give a name to a revision (e.g. “release-1.0”)

Local branches: Multiple branches within the same repository,

Pack files: The default storage format for git is disk-inefficient. Run
“git gc” occasionally, and you’ll get the most compact
format of the VCS I know about.

Subversion interface: git-svn allows you to use git on a subversion
repository.

Git daemon: serve Git repository much faster than plain HTTP.
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Benefit of Version Control

Working alone:
I Possibility to revert to a previous revision,
I Makes it easy to review your own code (before committing),
I Synchronization of multiple machines.

Collaborative development:
I One can work without disturbing others,
I Merge is automated.

“Text editing without version control is like
sky diving without a parachute!”

Matthieu Moy (Verimag) DVC 2007 < 37 / 43 >



Prehistory History Linux Git Conclusion

Benefit of Version Control

Working alone:
I Possibility to revert to a previous revision,
I Makes it easy to review your own code (before committing),
I Synchronization of multiple machines.

Collaborative development:
I One can work without disturbing others,
I Merge is automated.

“Text editing without version control is like
sky diving without a parachute!”

Matthieu Moy (Verimag) DVC 2007 < 37 / 43 >



Prehistory History Linux Git Conclusion

Benefit of Decentralized Version Control

Easy branch/merge,

Simplifies permission management
(no need to give any permission to other users),

Disconnected operation
(useful for laptop users in particular).

Private branches.
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Other Decentralized Version Control Systems

Monotone: A clever system based on hashes (SHA1). Inspired git a lot.
http://venge.net/monotone/

Bazaar: Designed for ease of use and flexibility. Used and developed
by Canonical (Ubuntu),
http://bazaar-vcs.org/

Mercurial: Close in concepts and performance to git. Written in python,
with a plugin system.
http://www.selenic.com/mercurial/

Darcs: Based on a powerful patch theory. Was the first system to
have a really simple user-interface.
http://abridgegame.org/darcs/

SVK: Distributed Version Control built on top of Subversion.
http://svk.bestpractical.com/
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Emacs Users

[ Warning: Self advertisement ]

Most version control systems have an Emacs integration.

Check out DVC: http://download.gna.org/dvc/
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Version Control and Backups

Version Control is a good complement for backups

But your repository should be backed-up/replicated !
(many users lost their data and their revision history at the same time
with a disk crash)

Usually:
I Version Control = User side (manual creation of project, manual add

of source files, manual commits, . . . )
I Backup = System Administrator side (cron job, backing up everything)
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Last Word on Backups

Don’t trust your hard disk,

Don’t trust a CD (too short life),

Don’t trust yourself,

Don’t trust Anything!

REPLICATE!!!
I Multiple machines for normal work
I Multiple sites for important work (are you ready to loose you thesis if

your house or lab burns?)
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Learn More

Git: http://git.or.cz/

Git Tutorial: http://www.kernel.org/pub/software/scm/git/docs/tutorial.html

Version Control: http://en.wikipedia.org/wiki/Revision control

This presentation:
http://www-verimag.imag.fr/∼moy/slides/git/
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